science instruments

839 media by topicpage 1 of 9
CAPE CANAVERAL, Fla. – STS-125 Mission Specialist Michael Good puts on his launch-and-entry suit before heading for Launch Pad 39A at NASA's Kennedy Space Center in Florida.  This launch will be Good's first space shuttle flight.  Liftoff is scheduled for 2:01 p.m. May 11 EDT.  Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade NASA's Hubble Space Telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.  The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Kim Shiflett KSC-2009-3043

CAPE CANAVERAL, Fla. – STS-125 Mission Specialist Michael Good puts on...

CAPE CANAVERAL, Fla. – STS-125 Mission Specialist Michael Good puts on his launch-and-entry suit before heading for Launch Pad 39A at NASA's Kennedy Space Center in Florida. This launch will be Good's first sp... More

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, the IMAX 3D camera is lifted from a stand to be installed on the Orbital Replacement Unit Carrier, or ORUC.  The carrier will be installed in space shuttle Atlantis’ payload bay.  The camera will record the STS-125 mission to service the Hubble Space Telescope. Space shuttle Atlantis' 11-day flight is targeted for launch May 12 and will include five spacewalks in which astronauts will refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014.   Photo credit: NASA/Dimitri Gerondidakis KSC-2009-2341

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at ...

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, the IMAX 3D camera is lifted from a stand to be installed on the Orbital Replacement Unit Carrier, or ORUC. Th... More

CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center, space shuttle Atlantis' payload bay has been thoroughly cleaned and is ready to receive the carriers transporting the instruments and equipment needed to service the Hubble Space Telescope.  Atlantis is targeted to launch Oct. 8 on the STS-125 mission to service Hubble. The mission crew will perform history-making, on-orbit “surgery” on two important science instruments aboard the telescope. After capturing the telescope, two teams of spacewalking astronauts will perform the repairs during five planned spacewalks. Photo credit: NASA/Jack Pfaller KSC-08pd2122

CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kenn...

CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center, space shuttle Atlantis' payload bay has been thoroughly cleaned and is ready to receive the carriers transporting the inst... More

CAPE CANAVERAL, Fla. –  In the Orbiter Processing Facility at NASA's Kennedy Space Center, STS-125 Mission Specialist Michael Good checks out part of the equipment in space shuttle Atlantis' payload bay.  Equipment familiarization is part of the crew equipment interface test, which provides hands-on experience with hardware and equipment for the mission.  Atlantis is targeted to launch Oct. 8 on the STS-125 mission to service the Hubble Space Telescope. The mission crew will perform history-making, on-orbit “surgery” on two important science instruments aboard the telescope.  After capturing the telescope, two teams of spacewalking astronauts will perform the repairs during five planned spacewalks.    Photo credit: NASA/Kim Shiflett KSC-08pd1957

CAPE CANAVERAL, Fla. – In the Orbiter Processing Facility at NASA's K...

CAPE CANAVERAL, Fla. – In the Orbiter Processing Facility at NASA's Kennedy Space Center, STS-125 Mission Specialist Michael Good checks out part of the equipment in space shuttle Atlantis' payload bay. Equip... More

CAPE CANAVERAL, Fla. -- Workers unload a container holding the cruise stage, one of the first three elements for NASA's Mars Science Laboratory (MSL) that arrived at NASA Kennedy Space Center's Shuttle Landing Facility aboard an Air Force C-17 cargo plane.       The cruise stage, back shell and heat shield, the first flight elements to arrive for the MSL mission, were taken to the Payload Hazardous Servicing Facility (PHSF) located in the KSC Industrial Area to begin processing. The Curiosity rover will arrive next month.    A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life.  The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder KSC-2011-3510

CAPE CANAVERAL, Fla. -- Workers unload a container holding the cruise ...

CAPE CANAVERAL, Fla. -- Workers unload a container holding the cruise stage, one of the first three elements for NASA's Mars Science Laboratory (MSL) that arrived at NASA Kennedy Space Center's Shuttle Landing ... More

CAPE CANAVERAL, Fla. – Against a backdrop of clouds and framed below by banks of trees and bushes, space shuttle Atlantis roars off Launch Pad 39A at NASA's Kennedy Space Center in Florida for a rendezvous with NASA's Hubble Space Telescope on the STS-125 mission. Liftoff was on time at 2:01 p.m. EDT.  Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.  The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph.  Photo credit: NASA/Sandra Joseph-Kevin O'Connell KSC-2009-3076

CAPE CANAVERAL, Fla. – Against a backdrop of clouds and framed below b...

CAPE CANAVERAL, Fla. – Against a backdrop of clouds and framed below by banks of trees and bushes, space shuttle Atlantis roars off Launch Pad 39A at NASA's Kennedy Space Center in Florida for a rendezvous with... More

CAPE CANAVERAL, Fla. – On the fixed service structure on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-125 crew members review emergency exit procedures.  Seen here are Mission Specialists Michael Good and Megan McArthur. Not clearly visible in the background is Mission Specialist Andrew Feustel.  Space shuttle Atlantis' 11-day flight is targeted for launch May 12 and will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014.  Photo credit: NASA/Cory Huston KSC-2009-2530

CAPE CANAVERAL, Fla. – On the fixed service structure on Launch Pad 39...

CAPE CANAVERAL, Fla. – On the fixed service structure on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-125 crew members review emergency exit procedures. Seen here are Mission Specialists Micha... More

CAPE CANAVERAL, Fla. – Under a dry, hot, cloud-washed Florida sky, space shuttle Atlantis roars off Launch Pad 39A at NASA's Kennedy Space Center in Florida with its crew of seven for a rendezvous with NASA's Hubble Space Telescope.  The launch was on-time at 2:01 p.m. EDT.  Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.  The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph.  Photo credit: NASA/Fletcher Hildreth KSC-2009-3069

CAPE CANAVERAL, Fla. – Under a dry, hot, cloud-washed Florida sky, spa...

CAPE CANAVERAL, Fla. – Under a dry, hot, cloud-washed Florida sky, space shuttle Atlantis roars off Launch Pad 39A at NASA's Kennedy Space Center in Florida with its crew of seven for a rendezvous with NASA's H... More

CAPE CANAVERAL, Fla. – In the Firing Room at NASA's Kennedy Space Center in Florida, Steven Hoyle, left, and Russ Brucker, center, receive a VIP award for their efforts associated with the STS-125 mission and NASA's Hubble Space Telescope.  Hoyle is the payload test operations manager with NASA's Goddard Space Flight Center; Brucker is the Atlantis payload project manager with United Space Alliance.  A crew of seven launched today on space shuttle Atlantis to service Hubble. Liftoff was on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.  The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph.  Photo credit: NASA/Kim Shiflett KSC-2009-3074

CAPE CANAVERAL, Fla. – In the Firing Room at NASA's Kennedy Space Cent...

CAPE CANAVERAL, Fla. – In the Firing Room at NASA's Kennedy Space Center in Florida, Steven Hoyle, left, and Russ Brucker, center, receive a VIP award for their efforts associated with the STS-125 mission and N... More

CAPE CANAVERAL, Fla. –– On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted toward the payload changeout room, or PCR, on the rotating service structure. The red umbilical lines are still attached. The canister's cargo of Hubble Space Telescope equipment will be deposited in the PCR and later transferred to the payload bay on space shuttle Atlantis, at right. Atlantis' 11-day STS-125 mission to service Hubble is targeted for launch May 12.  The flight will include five spacewalks in which astronauts will refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014.  Photo credit: NASA/Kim Shiflett KSC-2009-2784

CAPE CANAVERAL, Fla. –– On Launch Pad 39A at NASA's Kennedy Space Cent...

CAPE CANAVERAL, Fla. –– On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted toward the payload changeout room, or PCR, on the rotating service structure. The red umbilica... More

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, the IMAX 3D camera is lifted and moved toward the Orbital Replacement Unit Carrier, or ORUC, for installation. The carrier will be installed in space shuttle Atlantis’ payload bay.  The camera will record the STS-125 mission to service the Hubble Space Telescope. Space shuttle Atlantis' 11-day flight is targeted for launch May 12 and will include five spacewalks in which astronauts will refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014.   Photo credit: NASA/Dimitri Gerondidakis KSC-2009-2342

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at ...

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, the IMAX 3D camera is lifted and moved toward the Orbital Replacement Unit Carrier, or ORUC, for installation. ... More

CAPE CANAVERAL, Fla. –– At NASA's Kennedy Space Center in Florida, the payload canister with the Hubble Space Telescope equipment passes the Vehicle Assembly Building and Launch Control Center (left) as it heads for Launch Pad 39A.  On the pad, the Hubble equipment will be transferred to space shuttle Atlantis' payload bay. Atlantis' 11-day STS-125 mission to service Hubble is targeted for launch May 12.  The flight will include five spacewalks in which astronauts will refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014.  Photo credit: NASA/Kim Shiflett KSC-2009-2778

CAPE CANAVERAL, Fla. –– At NASA's Kennedy Space Center in Florida, the...

CAPE CANAVERAL, Fla. –– At NASA's Kennedy Space Center in Florida, the payload canister with the Hubble Space Telescope equipment passes the Vehicle Assembly Building and Launch Control Center (left) as it head... More

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, the IMAX 3D camera is lowered toward the Orbital Replacement Unit Carrier, or ORUC, for installation. The carrier will be installed in space shuttle Atlantis’ payload bay.  The camera will record the STS-125 mission to service the Hubble Space Telescope. Space shuttle Atlantis' 11-day flight is targeted for launch May 12 and will include five spacewalks in which astronauts will refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014.   Photo credit: NASA/Dimitri Gerondidakis KSC-2009-2344

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at ...

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, the IMAX 3D camera is lowered toward the Orbital Replacement Unit Carrier, or ORUC, for installation. The carri... More

First Image from Mariner 4. NASA public domain image colelction.

First Image from Mariner 4. NASA public domain image colelction.

Description: (July 15, 1965) A "real-time data translator" machine converted Mariner 4 digital image data into numbers printed on strips of paper. Too anxious to wait for the official processed image, employees... More

CAPE CANAVERAL, Fla. – From Launch Pad 39A at NASA's Kennedy Space Center in Florida, space shuttle Atlantis hurtles into space on twin columns of fire on the STS-125 mission to service NASA's Hubble Space Telescope.  Liftoff was on time at 2:01 p.m. EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.  The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.  Photo courtesy of Scott Andrews KSC-2009-3115

CAPE CANAVERAL, Fla. – From Launch Pad 39A at NASA's Kennedy Space Cen...

CAPE CANAVERAL, Fla. – From Launch Pad 39A at NASA's Kennedy Space Center in Florida, space shuttle Atlantis hurtles into space on twin columns of fire on the STS-125 mission to service NASA's Hubble Space Tele... More

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida,  an overhead crane lowers the Flight Support System, or FSS, carrier with the Soft Capture Mechanism into the payload canister. The canister will deliver the FSS and other carriers to Launch Pad 39A for installation in space shuttle Atlantis' payload bay. Atlantis' 11-day STS-125 mission to service NASA's Hubble Space Telescope is targeted for launch May 12.  It will include five spacewalks in which astronauts will refurbish and upgrade the telescope with state-of-the-art science instruments. As a result, Hubble's capabilities will be expanded and its operational lifespan extended through at least 2014.  Photo credit: NASA/Jack Pfaller KSC-2009-2722

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at ...

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lowers the Flight Support System, or FSS, carrier with the Soft Capture Mechanism... More

CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center, a worker from United Space Alliance gives the signal that the payload bay doors on space shuttle Atlantis are closed. The payload bay has been thoroughly cleaned and is ready to receive the carriers transporting the instruments and equipment needed to service the Hubble Space Telescope.  Atlantis is targeted to launch Oct. 8 on the STS-125 mission to service Hubble. The mission crew will perform history-making, on-orbit “surgery” on two important science instruments aboard the telescope. After capturing the telescope, two teams of spacewalking astronauts will perform the repairs during five planned spacewalks. Photo credit: NASA/Jack Pfaller KSC-08pd2126

CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kenn...

CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center, a worker from United Space Alliance gives the signal that the payload bay doors on space shuttle Atlantis are closed. The ... More

CAPE CANAVERAL, Fla. – Clouds of smoke and steam swell over Launch Pad 39A at NASA's Kennedy Space Center in Florida as space shuttle Atlantis hurtles toward space on the STS-125 mission.  Atlantis will rendezvous with NASA's Hubble Space Telescope. Liftoff was on time at 2:01 p.m. EDT.  Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.  The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph.  Photo credit: NASA/Tony Gray-Tom Farrar KSC-2009-3083

CAPE CANAVERAL, Fla. – Clouds of smoke and steam swell over Launch Pad...

CAPE CANAVERAL, Fla. – Clouds of smoke and steam swell over Launch Pad 39A at NASA's Kennedy Space Center in Florida as space shuttle Atlantis hurtles toward space on the STS-125 mission. Atlantis will rendezv... More

CAPE CANAVERAL, Fla. –  In the Orbiter Processing Facility at NASA's Kennedy Space Center, STS-125 Mission Specialists Mike Massimino (left) and Michael Good (right) check out the orbiter boom sensor system and the attached camera in space shuttle Atlantis' payload bay.  Equipment familiarization is part of the crew equipment interface test, which provides hands-on experience with hardware and equipment for the mission.  Atlantis is targeted to launch Oct. 8 on the STS-125 mission to service the Hubble Space Telescope. The mission crew will perform history-making, on-orbit “surgery” on two important science instruments aboard the telescope.  After capturing the telescope, two teams of spacewalking astronauts will perform the repairs during five planned spacewalks.    Photo credit: NASA/Kim Shiflett KSC-08pd1959

CAPE CANAVERAL, Fla. – In the Orbiter Processing Facility at NASA's K...

CAPE CANAVERAL, Fla. – In the Orbiter Processing Facility at NASA's Kennedy Space Center, STS-125 Mission Specialists Mike Massimino (left) and Michael Good (right) check out the orbiter boom sensor system and... More

CAPE CANAVERAL, Fla. – STS-125 Mission Specialist Megan McArthur puts on her launch-and-entry suit before heading for Launch Pad 39A at NASA's Kennedy Space Center in Florida. This launch will be McArthur's first space shuttle flight.  Liftoff is scheduled for 2:01 p.m. May 11 EDT. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade NASA's Hubble Space Telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.  The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph. Photo credit: NASA/Kim Shiflett KSC-2009-3049

CAPE CANAVERAL, Fla. – STS-125 Mission Specialist Megan McArthur puts ...

CAPE CANAVERAL, Fla. – STS-125 Mission Specialist Megan McArthur puts on her launch-and-entry suit before heading for Launch Pad 39A at NASA's Kennedy Space Center in Florida. This launch will be McArthur's fir... More

CAPE CANAVERAL, Fla. – As clouds of smoke and steam smother Launch Pad 39A at NASA's Kennedy Space Center in Florida, space shuttle Atlantis soars above them atop a column of fire.  Atlantis will rendezvous with NASA's Hubble Space Telescope on the STS-125 mission.  Liftoff was on time at 2:01 p.m. EDT.  Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014.  The payload includes a Wide Field Camera 3, fine guidance sensor and the Cosmic Origins Spectrograph.  Photo credit: NASA/Tony Gray-Tom Farrar KSC-2009-3084

CAPE CANAVERAL, Fla. – As clouds of smoke and steam smother Launch Pad...

CAPE CANAVERAL, Fla. – As clouds of smoke and steam smother Launch Pad 39A at NASA's Kennedy Space Center in Florida, space shuttle Atlantis soars above them atop a column of fire. Atlantis will rendezvous wit... More

Voyager Spacecraft During Vibration Testing

Voyager Spacecraft During Vibration Testing

Two Voyager spacecraft were launched in 1977 to explore the outer planets and some of their satellites. A prototype Voyager spacecraft is shown at NASA's Jet Propulsion Laboratory in Pasadena, California, as it... More

Space Science, Space Shuttle Program, NASA

Space Science, Space Shuttle Program, NASA

In this photograph, Dr. Gerald Fishman of the Marshall Space Flight Center (MSFC), a principal investigator of the Compton Gamma-Ray Observatory's (GRO's) instrument, the Burst and Transient Source Experiment (... More

Space Shuttle Atlantis, Space Shuttle Projects

Space Shuttle Atlantis, Space Shuttle Projects

This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered t... More

This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program. n/a

This photograph shows the Compton Gamma-Ray Observatory (GRO) being de...

This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reenter... More

Spacelab, Space Shuttle Program, NASA

Spacelab, Space Shuttle Program, NASA

This is an STS-66 mission onboard photo showing the Remote Manipulator System (RMS) moving toward one of the solar science instruments for the third Atmospheric Laboratory for Applications and Science (ATLAS-3)... More

STS069-701-025 - STS-069 - View of the Endeavour's payload bay during STS-69 flight

STS069-701-025 - STS-069 - View of the Endeavour's payload bay during ...

The original finding aid described this as: Description: Close-up view of the payloads in the space shuttle Endeavour's payload bay during the STS-69 mission includes: view of science instruments and cylindric... More

STS069-701-029 - STS-069 - View of the Endeavour's payload bay during STS-69 flight

STS069-701-029 - STS-069 - View of the Endeavour's payload bay during ...

The original finding aid described this as: Description: Close-up view of the payloads in the space shuttle Endeavour's payload bay during the STS-69 mission includes: view of science instruments and cylindric... More

STS069-701-024 - STS-069 - View of the Endeavour's payload bay during STS-69 flight

STS069-701-024 - STS-069 - View of the Endeavour's payload bay during ...

The original finding aid described this as: Description: Close-up view of the payloads in the space shuttle Endeavour's payload bay during the STS-69 mission includes: view of science instruments and cylindric... More

STS069-701-028 - STS-069 - View of the Endeavour's payload bay during STS-69 flight

STS069-701-028 - STS-069 - View of the Endeavour's payload bay during ...

The original finding aid described this as: Description: Close-up view of the payloads in the space shuttle Endeavour's payload bay during the STS-69 mission includes: view of science instruments and cylindric... More

STS069-701-026 - STS-069 - View of the Endeavour's payload bay during STS-69 flight

STS069-701-026 - STS-069 - View of the Endeavour's payload bay during ...

The original finding aid described this as: Description: Close-up view of the payloads in the space shuttle Endeavour's payload bay during the STS-69 mission includes: view of science instruments and cylindric... More

STS069-701-020 - STS-069 - View of the Endeavour's payload bay during STS-69 flight

STS069-701-020 - STS-069 - View of the Endeavour's payload bay during ...

The original finding aid described this as: Description: Close-up view of the payloads in the space shuttle Endeavour's payload bay during the STS-69 mission includes: view of science instruments and cylindric... More

History of Chandra X-Ray Observatory

History of Chandra X-Ray Observatory

This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the C... More

Space Science, Space Shuttle Program, NASA

Space Science, Space Shuttle Program, NASA

In this photograph, Dr. Gerald Fishman of the Marshall Space Flight Center (MSFC), a principal investigator of the Compton Gamma-Ray Observatory's (GRO's) instrument, the Burst and Transient Source Experiment (... More

Theseus Take-off from Rogers Dry Lake

Theseus Take-off from Rogers Dry Lake

Description: The Theseus prototype research aircraft shows off its high aspect-ratio wing in this rear view of the aircraft as it takes off on its first test flight from NASA's Dryden Flight Research Center, Ed... More

Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which /1997/66-97.htm">just landed</a> at KSC’s Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc678

Workers offload the shipping container with the Cassini orbiter from w...

Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which kscpao/release/1997/66-97.htm">just landed</a> at ... More

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The /1997/66-97.htm">orbiter arrived</a> at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc682

Workers prepare to move the shipping container with the Cassini orbite...

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The kscpao/release/1997/66-97.ht... More

Workers prepare to tow away the large container with the Cassini orbiter from KSC’s Shuttle Landing Facility. The orbiter /1997/66-97.htm">just arrived</a> on the U.S. Air Force C-17 air cargo plane, shown here, from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc679

Workers prepare to tow away the large container with the Cassini orbit...

Workers prepare to tow away the large container with the Cassini orbiter from KSC’s Shuttle Landing Facility. The orbiter kscpao/release/1997/66-97.htm">just arrived</a> on the U.S. Air Force C-17 air cargo pla... More

Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17 air cargo plane after its /1997/66-97.htm">arrival</a> at KSC’s Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc677

Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17...

Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17 air cargo plane after its kscpao/release/1997/66-97.htm">arrival</a> at KSC’s Shuttle Landing Facility from Edwards Air Force Base, Califor... More

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The /1997/66-97.htm">orbiter arrived</a> at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc681

Workers prepare to move the shipping container with the Cassini orbite...

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The kscpao/release/1997/66-97.ht... More

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The /1997/66-97.htm">orbiter arrived</a> at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc680

Workers prepare to move the shipping container with the Cassini orbite...

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The kscpao/release/1997/66-97.ht... More

An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the front heat shield of the Huygens probe during prelaunch processing testing and integration in that facility, with the probe’s back cover in the background. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc729

An employee in the Payload Hazardous Servicing Facility (PHSF) sews th...

An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the front heat shield of the Huygens probe during prelaunch processing testing and integration in that facility... More

A worker in the Payload Hazardous Servicing Facility (PHSF) stands behind the bottom side of the experiment platform for the Huygens probe that will accompany the Cassini orbiter to Saturn during prelaunch processing testing and integration in that facility. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc732

A worker in the Payload Hazardous Servicing Facility (PHSF) stands beh...

A worker in the Payload Hazardous Servicing Facility (PHSF) stands behind the bottom side of the experiment platform for the Huygens probe that will accompany the Cassini orbiter to Saturn during prelaunch proc... More

Workers in the Payload Hazardous Servicing Facility (PHSF) stand around the upper experiment module and base of the Cassini orbiter during prelaunch processing, testing and integration in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc731

Workers in the Payload Hazardous Servicing Facility (PHSF) stand aroun...

Workers in the Payload Hazardous Servicing Facility (PHSF) stand around the upper experiment module and base of the Cassini orbiter during prelaunch processing, testing and integration in that facility. The Cas... More

Workers in the Payload Hazardous Servicing Facility (PHSF) perform checkouts of the upper experiment module and base of the Cassini orbiter during prelaunch processing, testing and integration in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc727

Workers in the Payload Hazardous Servicing Facility (PHSF) perform che...

Workers in the Payload Hazardous Servicing Facility (PHSF) perform checkouts of the upper experiment module and base of the Cassini orbiter during prelaunch processing, testing and integration in that facility.... More

Employees in the Payload Hazardous Servicing Facility (PHSF) lower the upper experiment module and base of the Cassini orbiter onto a work stand during prelaunch processing, testing and integration work in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc726

Employees in the Payload Hazardous Servicing Facility (PHSF) lower the...

Employees in the Payload Hazardous Servicing Facility (PHSF) lower the upper experiment module and base of the Cassini orbiter onto a work stand during prelaunch processing, testing and integration work in that... More

An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the back cover and heat shield of the Huygens probe during prelaunch processing, testing and integration in that facility. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc728

An employee in the Payload Hazardous Servicing Facility (PHSF) sews th...

An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the back cover and heat shield of the Huygens probe during prelaunch processing, testing and integration in tha... More

An employee in the Payload Hazardous Servicing Facility (PHSF) works on the top side of the experiment platform for the Huygens probe that will accompany the Cassini orbiter to Saturn during prelaunch processing, testing and integration in that facility. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc730

An employee in the Payload Hazardous Servicing Facility (PHSF) works o...

An employee in the Payload Hazardous Servicing Facility (PHSF) works on the top side of the experiment platform for the Huygens probe that will accompany the Cassini orbiter to Saturn during prelaunch processin... More

NASA Space Science. NASA public domain image colelction.

NASA Space Science. NASA public domain image colelction.

The 7-year journey to Saturn began with the liftoff of a Titan IVB/ Centaur carrying the Cassini orbiter and its attached Huygens probe. After a 2.2-billion mile journey that included two swingbys of Venus and ... More

NASA Space Science. NASA public domain image colelction.

NASA Space Science. NASA public domain image colelction.

The 7-year journey to Saturn began with the liftoff of a Titan IVB/Centaur carrying the Cassini orbiter and its attached Huygens probe. After a 2.2-billion mile journey that included two swingbys of Venus and o... More

History of Chandra X-Ray Observatory

History of Chandra X-Ray Observatory

This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-Ameri... More

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is loaded onto a truck after its flight aboard an Air Force C-17 cargo plane that carried it from the Lockheed Martin Astronautics plant in Denver, CO. The lander is being transported to the Spacecraft Assembly and Encapsulation Facility-2(SAEF-2) in the KSC Industrial Area for testing, including a functional test of the science instruments and the basic spacecraft subsystems. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars Polar Lander spacecraft is planned for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999 KSC-98pc1196

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mar...

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is loaded onto a truck after its flight aboard an Air Force C-17 cargo plane that carried it from the Lockheed Martin Astrona... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the protective covering for the Mars Polar Lander is removed so technicians can prepare the Lander for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1236

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the protective covering for the Mars Polar Lander is removed so technicians can prepare the Lander for testing, wh... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician begins testing on the Mars Polar Lander. The checkout includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1235

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician begins testing on the Mars Polar Lander. The checkout includes a functional test of the science instr... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1230

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed for testing, which includes a functional test of the science instrumen... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is secured on a workstand for testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1231

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Polar Lander is secured on a workstand for testing, which includes a functional test of the science instr... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is lowered onto a portable stand. The Lander will undergo testing, including a functional test of the science instruments and the basic spacecraft subsystems, before its launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1233

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is lowered onto a portable stand. The Lander will undergo testing, including a fu... More

KENNEDY SPACE CENTER, FLA.  --  In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed to prepare the Lander for testing, including a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1229

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsu...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is removed to prepare the Lander for testing, including a functional test of th... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is swung out of the way before testing, which includes a functional test of the science instruments and the basic spacecraft subsystems. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1232

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is swung out of the way before testing, which includes a functional test of the s... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is secured on a portable stand. The Lander will undergo testing, including a functional test of the science instruments and the basic spacecraft subsystems, before its launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1234

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the top of the Mars Polar Lander is secured on a portable stand. The Lander will undergo testing, including a func... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), technicians check underneath the Mars Polar Lander during the testing of science instruments. The solar-powered spacecraft is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. It is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1339

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), technicians check underneath the Mars Polar Lander during the testing of science instruments. The solar-powered sp... More

KENNEDY SPACE CENTE, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician tests the science instruments and the basic spacecraft subsystems on the Mars Polar Lander. The solar-powered spacecraft is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. It is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1338

KENNEDY SPACE CENTE, FLA. -- In the Spacecraft Assembly and Encapsulat...

KENNEDY SPACE CENTE, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician tests the science instruments and the basic spacecraft subsystems on the Mars Polar Lander. The solar-... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), technicians test the science instruments and the basic spacecraft subsystems on the Mars Polar Lander. The solar-powered spacecraft is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. It is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1337

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), technicians test the science instruments and the basic spacecraft subsystems on the Mars Polar Lander. The solar-p... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers adjust the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1373

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers adjust the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science instruments... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers move the Mars Polar Lander to a work stand where it will undergo testing of the science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1371

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers move the Mars Polar Lander to a work stand where it will undergo testing of the science instruments and ba... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician checks out the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1372

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a technician checks out the Mars Polar Lander on its workstand. The spacecraft is undergoing testing of science in... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers check out the solar panel on the Mars Polar Lander. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1374

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), workers check out the solar panel on the Mars Polar Lander. The spacecraft is undergoing testing of science instru... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians lower the Mars Polar Lander onto a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The Lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1601

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians lower the Mars Polar Lander onto a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft s... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians guide the raised Mars Polar Lander to another site. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1600

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians guide the raised Mars Polar Lander to another site. The spacecraft is undergoing testing of science instruments and basic spacec... More

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians begin to lift the Mars Polar Lander to move it to a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1599

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC ...

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians begin to lift the Mars Polar Lander to move it to a workstand. The spacecraft is undergoing testing of science instruments and b... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians check underneath the Mars Polar Lander as it sits on a workstand. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1606

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians check underneath the Mars Polar Lander as it sits on a workstand. The spacecraft is undergoing tes... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician takes part in testing science instruments and basic spacecraft subsystems on the Mars Polar Lander. The solar-powered spacecraft, targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1607

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), a KSC technician takes part in testing science instruments and basic spacecraft subsystems on the Mars Polar Lande... More

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians look over the Mars Polar Lander. The spacecraft is undergoing testing of science instruments and basic spacecraft subsystems. Targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999, the solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The Lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1605

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsula...

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), KSC technicians look over the Mars Polar Lander. The spacecraft is undergoing testing of science instruments and b... More

The rocket faring (left) displays a logo of the many science instruments that make up NASA's Terra spacecraft (background). When fully assembled, Terra will be encapsulated in the faring before launch, scheduled for Dec. 16 aboard a Lockheed Martin Atlas IIAS rocket from Space Launch Complex 3 East at Vandenberg AFB, Calif. Terra comprises five state-of-the-art sets of instruments that will collect data for continuous, long-term records of the state of Earth's land, oceans and atmosphere. Together with data from other satellite systems launched by NASA and other countries, it will inaugurate a new self-consistent data record that will be gathered over the next 15 years. From an altitude of 438 miles, Terra will circle the Earth 16 times a day from pole to pole (98 degree inclination), crossing the equator at 10:30 a.m. The five Terra instruments will operate by measuring sunlight reflected by the Earth and heat emitted by the Earth KSC-99pp1415

The rocket faring (left) displays a logo of the many science instrumen...

The rocket faring (left) displays a logo of the many science instruments that make up NASA's Terra spacecraft (background). When fully assembled, Terra will be encapsulated in the faring before launch, schedule... More

NASA's Terra spacecraft (right) is prepared for encapsulation in the rocket faring (left) before launch at Vandenberg AFB, Calif. The faring displays a logo of the many science instruments that make up Terra. The spacecraft's launch aboard a Lockheed Martin Atlas IIAS rocket is scheduled for Dec. 16 from Space Launch Complex 3 East at Vandenberg. Terra comprises five state-of-the-art sets of instruments that will collect data for continuous, long-term records of the state of Earth's land, oceans and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. From an altitude of 438 miles, Terra will circle the Earth 16 times a day from pole to pole (98 degree inclination), crossing the equator at 10:30 a.m. The five Terra instruments will operate by measuring sunlight reflected by the Earth and heat emitted by the Earth KSC-99pp1410

NASA's Terra spacecraft (right) is prepared for encapsulation in the r...

NASA's Terra spacecraft (right) is prepared for encapsulation in the rocket faring (left) before launch at Vandenberg AFB, Calif. The faring displays a logo of the many science instruments that make up Terra. T... More

Two Russian scientists look over the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), after its removal from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Research Institute (IKI). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The orbiter will carry two other science instruments: THEMIS and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0414

Two Russian scientists look over the High Energy Neutron Detector (HEN...

Two Russian scientists look over the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), after its removal from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Re... More

In the Spacecraft Assembly and Encapsulation Facility 2, a Russian scientist (SAEF-2) looks over the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), after its removal from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Research Institute (IKI). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The orbiter will carry two other science instruments: THEMIS and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0413

In the Spacecraft Assembly and Encapsulation Facility 2, a Russian sci...

In the Spacecraft Assembly and Encapsulation Facility 2, a Russian scientist (SAEF-2) looks over the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), after its removal from the 20... More

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), workers prepare to remove the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Research Institute (IKI). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The orbiter will carry two other science instruments: THEMIS and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0411

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), work...

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), workers prepare to remove the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), from the 2001 Mars Odyssey Orbiter... More

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), a worker removes the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), from the 2001 Mars Odyssey Orbiter. The HEND was built by Russia’s Space Research Institute (IKI). The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The orbiter will carry two other science instruments: THEMIS and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0412

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), a wo...

In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2), a worker removes the High Energy Neutron Detector (HEND), part of the Gamma Ray Spectrometer (GRS), from the 2001 Mars Odyssey Orbiter. The HEN... More

KENNEDY SPACE CENTER, FLA. -  Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, steady the Boeing Delta II rocket as it is lifted up the launch tower. The rocket is the launch vehicle for the Space Infrared Telescope Facility.   SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space between wavelengths of 3 and 180 microns (1 micron is one-millionth of a meter).  Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched.  Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes on the ground or orbiting telescopes such as the Hubble Space Telescope. KSC-03pd0534

KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Can...

KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, steady the Boeing Delta II rocket as it is lifted up the launch tower. The rocket is the launch vehicle for the Sp... More

KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket, the launch vehicle for the Space Infrared Telescope Facility, stands upright in the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station.   SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space between wavelengths of 3 and 180 microns (1 micron is one-millionth of a meter).  Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched.  Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes on the ground or orbiting telescopes such as the Hubble Space Telescope. KSC-03pd0535

KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket, the launch ve...

KENNEDY SPACE CENTER, FLA. - The Boeing Delta II rocket, the launch vehicle for the Space Infrared Telescope Facility, stands upright in the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station... More

KENNEDY SPACE CENTER, FLA. - This closeup shows the logos of NASA and SIRTF, the payload to be carried into space by this Boeing Delta II rocket. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space between wavelengths of 3 and 180 microns (1 micron is one-millionth of a meter).  Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched.  Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes on the ground or orbiting telescopes such as the Hubble Space Telescope. SIRTF is scheduled for launch from Launch Complex 17-B, Cape Canaveral Air Force Station. KSC-03pd0533

KENNEDY SPACE CENTER, FLA. - This closeup shows the logos of NASA and ...

KENNEDY SPACE CENTER, FLA. - This closeup shows the logos of NASA and SIRTF, the payload to be carried into space by this Boeing Delta II rocket. SIRTF will obtain images and spectra by detecting the infrared e... More

KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-B, Cape Canaveral Air Force Station, a Boeing Delta II rocket is raised to a vertical position on the launch tower.  The rocket is the launch vehicle for the Space Infrared Telescope Facility.   SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space between wavelengths of 3 and 180 microns (1 micron is one-millionth of a meter).  Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched.  Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes on the ground or orbiting telescopes such as the Hubble Space Telescope. KSC-03pd0531

KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-B, Cape Canaveral Ai...

KENNEDY SPACE CENTER, FLA. - At Launch Complex 17-B, Cape Canaveral Air Force Station, a Boeing Delta II rocket is raised to a vertical position on the launch tower. The rocket is the launch vehicle for the Sp... More

KENNEDY SPACE CENTER, FLA. - Viewed from below, a Boeing Delta II rocket is lifted up the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station. The rocket is the launch vehicle for the Space Infrared Telescope Facility.   SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space between wavelengths of 3 and 180 microns (1 micron is one-millionth of a meter).  Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched.  Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes on the ground or orbiting telescopes such as the Hubble Space Telescope. KSC-03pd0532

KENNEDY SPACE CENTER, FLA. - Viewed from below, a Boeing Delta II rock...

KENNEDY SPACE CENTER, FLA. - Viewed from below, a Boeing Delta II rocket is lifted up the launch tower on Launch Complex 17-B, Cape Canaveral Air Force Station. The rocket is the launch vehicle for the Space In... More

KENNEDY SPACE CENTER, FLA. - Workers maneuver another solid rocket booster that will be mated with the Delta II rocket in the background. The Delta II will launch the Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0649

KENNEDY SPACE CENTER, FLA. - Workers maneuver another solid rocket boo...

KENNEDY SPACE CENTER, FLA. - Workers maneuver another solid rocket booster that will be mated with the Delta II rocket in the background. The Delta II will launch the Space Infrared Telescope Facility. The seco... More

KENNEDY SPACE CENTER, FLA. - Another solid rocket booster is lifted up the tower on Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta II rocket that will launch the Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0647

KENNEDY SPACE CENTER, FLA. - Another solid rocket booster is lifted up...

KENNEDY SPACE CENTER, FLA. - Another solid rocket booster is lifted up the tower on Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta II rocket that will launch the Space Infrared... More

KENNEDY SPACE CENTER, FLA. --  This view looks down on two of the nine solid rocket boosters that will be mated with the Delta II rocket on Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II will launch the Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0650

KENNEDY SPACE CENTER, FLA. -- This view looks down on two of the nine...

KENNEDY SPACE CENTER, FLA. -- This view looks down on two of the nine solid rocket boosters that will be mated with the Delta II rocket on Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II wi... More

KENNEDY SPACE CENTER, FLA. -- One of nine solid rocket boosters is lifted up the tower on Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta II rocket that will launch the Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0645

KENNEDY SPACE CENTER, FLA. -- One of nine solid rocket boosters is lif...

KENNEDY SPACE CENTER, FLA. -- One of nine solid rocket boosters is lifted up the tower on Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta II rocket that will launch the Space In... More

KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-B, Cape Canaveral Air Force Station, waits for additional solid rocket boosters to be mated.  The Delta II will launch the Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0648

KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-...

KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-B, Cape Canaveral Air Force Station, waits for additional solid rocket boosters to be mated. The Delta II will launch the Space Infrared Te... More

KENNEDY SPACE CENTER, FLA. -- This view looks down on two of the nine solid rocket boosters that will be mated with the Delta II rocket on Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II will launch the Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0651

KENNEDY SPACE CENTER, FLA. -- This view looks down on two of the nine ...

KENNEDY SPACE CENTER, FLA. -- This view looks down on two of the nine solid rocket boosters that will be mated with the Delta II rocket on Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II wil... More

KENNEDY SPACE CENTER, FLA. -- One of nine solid rocket boosters is lifted up the tower on Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta II rocket that will launch the Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0646

KENNEDY SPACE CENTER, FLA. -- One of nine solid rocket boosters is lif...

KENNEDY SPACE CENTER, FLA. -- One of nine solid rocket boosters is lifted up the tower on Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta II rocket that will launch the Space In... More

KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, workers prepare another solid rocket booster that will be mated with the Delta II rocket in the background. The Delta II will launch the Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0652

KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Ai...

KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, workers prepare another solid rocket booster that will be mated with the Delta II rocket in the background. The Delta II wi... More

The Space Infrared Telescope Facility (SIRTF) arrives at Building AE from the Lockheed Martin plant in Sunnyvale, Calif., to begin final preparations for its launch aboard a Delta II rocket. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is scheduled for launch April 15 at 4:34:07 a.m. EDT from Launch Complex 17-B, Cape Canaveral Air Force Station. SIRTF Arrival

The Space Infrared Telescope Facility (SIRTF) arrives at Building AE f...

The Space Infrared Telescope Facility (SIRTF) arrives at Building AE from the Lockheed Martin plant in Sunnyvale, Calif., to begin final preparations for its launch aboard a Delta II rocket. SIRTF will obtain i... More

KENNEDY SPACE CENTER, FLA. --  The Space Infrared Telescope Facility (SIRTF) rests in a horizontal position in the clean room of Building AE today following its arrival from the Lockheed Martin plant in Sunnyvale, Calif.  Final preparations for its launch aboard a Delta II rocket will now commence.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space between wavelengths of 3 and 180 microns (1 micron is one-millionth of a meter). Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes on the ground or orbiting telescopes such as the Hubble Space Telescope. SIRTF is scheduled for launch from Launch Complex 17-B, Cape Canaveral Air Force Station. KSC-03pd0602

KENNEDY SPACE CENTER, FLA. -- The Space Infrared Telescope Facility (...

KENNEDY SPACE CENTER, FLA. -- The Space Infrared Telescope Facility (SIRTF) rests in a horizontal position in the clean room of Building AE today following its arrival from the Lockheed Martin plant in Sunnyva... More

KENNEDY SPACE CENTER, Fla. -  The Delta II rocket on Launch Pad 17-B, Cape Canaveral Air Force Station, waits for the mating of additional  solid rocket boosters. The Delta will launch NASA's Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0676

KENNEDY SPACE CENTER, Fla. - The Delta II rocket on Launch Pad 17-B, ...

KENNEDY SPACE CENTER, Fla. - The Delta II rocket on Launch Pad 17-B, Cape Canaveral Air Force Station, waits for the mating of additional solid rocket boosters. The Delta will launch NASA's Space Infrared Tel... More

KENNEDY SPACE CENTER, FLA. - A booster rocket is prepared for lifting up the launch tower at Cape Canaveral Air Force Station.  It is one of nine solid rocket boosters being erected and mated to the Delta II rocket for launch of NASA's Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0674

KENNEDY SPACE CENTER, FLA. - A booster rocket is prepared for lifting ...

KENNEDY SPACE CENTER, FLA. - A booster rocket is prepared for lifting up the launch tower at Cape Canaveral Air Force Station. It is one of nine solid rocket boosters being erected and mated to the Delta II ro... More

KENNEDY SPACE CENTER, FLA. - At Building AE, the Space Infrared Telescope Facility (SIRTF) is unpacked after being shipped from the Lockheed Martin plant in Sunnyvale, Calif. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF is scheduled for launch aboard a Delta II rocket from Launch Complex 17-B, Cape Canaveral Air Force Station. KSC-03pd0617

KENNEDY SPACE CENTER, FLA. - At Building AE, the Space Infrared Telesc...

KENNEDY SPACE CENTER, FLA. - At Building AE, the Space Infrared Telescope Facility (SIRTF) is unpacked after being shipped from the Lockheed Martin plant in Sunnyvale, Calif. SIRTF will obtain images and spectr... More

KENNEDY SPACE CENTER, Fla. - On Launch Pad 17-B, Cape Canaveral Air Force Station, two solid rocket boosters are in the launch tower while another is ready to be lifted.  They are three of nine solid rocket boosters being erected and mated to the Delta II rocket for launch of NASA's Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0675

KENNEDY SPACE CENTER, Fla. - On Launch Pad 17-B, Cape Canaveral Air Fo...

KENNEDY SPACE CENTER, Fla. - On Launch Pad 17-B, Cape Canaveral Air Force Station, two solid rocket boosters are in the launch tower while another is ready to be lifted. They are three of nine solid rocket boo... More

KENNEDY SPACE CENTER, Fla. -  Workers on Launch Pad 17-B, Cape Canaveral Air Force Station, oversee the lifting of a solid rocket booster into the launch tower.  It is one of nine solid rocket boosters being erected and mated to the Delta II rocket for launch of NASA's Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0678

KENNEDY SPACE CENTER, Fla. - Workers on Launch Pad 17-B, Cape Canaver...

KENNEDY SPACE CENTER, Fla. - Workers on Launch Pad 17-B, Cape Canaveral Air Force Station, oversee the lifting of a solid rocket booster into the launch tower. It is one of nine solid rocket boosters being er... More

KENNEDY SPACE CENTER, Fla. -  A third solid rocket booster is lifted into the launch tower on Launch Pad 17-B, Cape Canaveral Air Force Station.  They are three of nine solid rocket boosters being erected and mated to the Delta II rocket for launch of NASA's Space Infrared Telescope Facility. The second stage will later be hoisted atop the first stage.  SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground. Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. KSC-03pd0677

KENNEDY SPACE CENTER, Fla. - A third solid rocket booster is lifted i...

KENNEDY SPACE CENTER, Fla. - A third solid rocket booster is lifted into the launch tower on Launch Pad 17-B, Cape Canaveral Air Force Station. They are three of nine solid rocket boosters being erected and m... More

Previous

of 9

Next