astrotech

2,474 media by topicpage 1 of 25
CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft into Astrotech's payload processing facility in Titusville, Fla. to begin final testing and preparations for launch.        The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2818

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft...

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft into Astrotech's payload processing facility in Titusville, Fla. to begin final testing and preparations for launch. The solar-power... More

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation Belt Storm Probe B, enclosed in a protective shipping container, from a flatbed truck at the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida where Applied Physics Laboratory technicians will begin spacecraft testing and prelaunch preparations.  The twin RBSP spacecraft arrived at Kennedy’s Shuttle Landing Facility in the cargo bay of a U.S. Air Force C-17 aircraft earlier in the day.          The RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. The RBSP instruments will provide the measurements needed to characterize and quantify the plasma processes that produce very energetic ions and relativistic electrons. The mission is part of NASA’s broader Living With a Star Program that was conceived to explore fundamental processes that operate throughout the solar system, and in particular those that generate hazardous space weather effects in the vicinity of Earth and phenomena that could impact solar system exploration. RBSP is scheduled to begin its mission of exploration of Earth's Van Allen Radiation Belts and the extremes of space weather after launch. Launch aboard a United Launch Alliance Atlas V rocket is scheduled for August 23.  For more information, visit http://www.nasa.gov/rbsp.  Photo credit: NASA/Kim Shiflett KSC-2012-2638

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation B...

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation Belt Storm Probe B, enclosed in a protective shipping container, from a flatbed truck at the Astrotech payload processing facility near NASA’... More

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processing facility in Titusville, Fla. install thermal insulation on NASA's Juno magnetometer boom. The boom structure is attached to Juno's solar array #1 that will help power the NASA spacecraft on its mission to Jupiter.      The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2821

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processin...

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processing facility in Titusville, Fla. install thermal insulation on NASA's Juno magnetometer boom. The boom structure is attached to Juno's solar a... More

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's payload processing facility in Titusville, Fla. remove the protective wrapping from NASA's Juno spacecraft to begin final testing and preparations for launch.      The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2829

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's pay...

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's payload processing facility in Titusville, Fla. remove the protective wrapping from NASA's Juno spacecraft to begin final testing and preparati... More

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the flatbed truck  with the SV-1 cargo of the STSS Demonstrator spacecraft begins moving to the Astrotech payload processing facility in Titusville, Fla.  The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer.  Photo credit: NASA/Kim Shiflett  (Approved for Public Release 09-MDA-4804 [4 Aug 09] ) KSC-2009-4615

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing ...

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the flatbed truck with the SV-1 cargo of the STSS Demonstrator spacecraft begins moving to the Astrotech payload processing facil... More

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, has been offloaded from a C-17 military cargo aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Center  in Florida. The satellite will be moved to the Astrotech payload processing facility in Titusville, Fla. Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle.  Photo credit: NASA/Kim Shiflett KSC-2009-1936

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmen...

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, has been offloaded from a C-17 military cargo aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Cente... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers  check the latest Geostationary Operational Environmental Satellite, or GOES, as it moves out of the C-17 military cargo aircraft. Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite.  After arriving, the satellite was transported to Astrotech in Titusville, Fla., where final testing of the imaging system, instrumentation, communications and power systems will be performed. Photo credit: NASA/Kim Shiflett KSC-2009-1935

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers check the latest Geostationary Operational Environmental Satellite, or GOES, as it moves out of the C-1... More

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, arrives on a C-17 military cargo aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Center  in Florida from its manufacturing plant in El Segundo, Calif.  Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite.  After arriving, the satellite was transported to Astrotech in Titusville, Fla., where final testing of the imaging system, instrumentation, communications and power systems will be performed. Photo credit: NASA/Kim Shiflett KSC-2009-1931

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmen...

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, arrives on a C-17 military cargo aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida... More

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, moves out of the C-17 military cargo aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida.  Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite.  After arriving, the satellite was transported to Astrotech in Titusville, Fla., where final testing of the imaging system, instrumentation, communications and power systems will be performed. Photo credit: NASA/Kim Shiflett KSC-2009-1933

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmen...

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, moves out of the C-17 military cargo aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Center in Flor... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers  check the latest Geostationary Operational Environmental Satellite, or GOES, as it moves out of the C-17 military cargo aircraft. Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite.  After arriving, the satellite was transported to Astrotech in Titusville, Fla., where final testing of the imaging system, instrumentation, communications and power systems will be performed. Photo credit: NASA/Kim Shiflett KSC-2009-1934

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers check the latest Geostationary Operational Environmental Satellite, or GOES, as it moves out of the C-1... More

CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the latest Geostationary Operational Environmental Satellite, or GOES, is lowered onto the floor.  Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite.  The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems.  Photo credit: NASA/Kim Shiflett KSC-2009-1939

CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in...

CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla., the latest Geostationary Operational Environmental Satellite, or GOES, is lowered onto the floor. Developed by NASA for ... More

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, is lifted from the transporter and moved into the Astrotech payload processing facility in Titusville, Fla.  Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle.  Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite.  The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. Photo credit: NASA/Kim Shiflett KSC-2009-1938

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmen...

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, is lifted from the transporter and moved into the Astrotech payload processing facility in Titusville, Fla. Develop... More

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, is prepared for offloading from the C-17 military cargo aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida.  Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite.  After arriving, the satellite was transported to Astrotech in Titusville, Fla., where final testing of the imaging system, instrumentation, communications and power systems will be performed. Photo credit: NASA/Kim Shiflett KSC-2009-1932

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmen...

CAPE CANAVERAL, Fla. – The latest Geostationary Operational Environmental Satellite, or GOES, is prepared for offloading from the C-17 military cargo aircraft at the Shuttle Landing Facility at NASA's Kennedy S... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center  in Florida, the latest Geostationary Operational Environmental Satellite, or GOES, is secured on a transporter for its move to the Astrotech payload processing facility in Titusville, Fla.  Developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA, the GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle.  Photo credit: NASA/Kim Shiflett KSC-2009-1937

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the latest Geostationary Operational Environmental Satellite, or GOES, is secured on a transporter for its move... More

STS-46 EURECA spacecraft during processing at Astrotech Space Operation

STS-46 EURECA spacecraft during processing at Astrotech Space Operatio...

S92-41442 (3 Dec 1991) --- At the Astrotech Space Operations spacecraft processing facility in Titusville, German aerospace workers check out the European Retrievable Carrier (EURECA) after removing it from the... More

Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power systems of the spacecraft. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The launch of the satellite from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) is currently planned for Apr. 24 at the opening of a launch window which extends from 1:56 to 3:19 a.m. EDT KSC-97pc223

Space Systems/LORAL employees inspect solar panels for the GOES-K weat...

Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power sys... More

Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power systems of the spacecraft. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The launch of the satellite from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) is currently planned for Apr. 24 at the opening of a launch window which extends from 1:56 to 3:19 a.m. EDT KSC-97pc224

Space Systems/LORAL employees inspect solar panels for the GOES-K weat...

Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power sys... More

Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power systems of the spacecraft. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The launch of the satellite from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) is currently planned for Apr. 24 at the opening of a launch window which extends from 1:56 to 3:19 a.m. EDT KSC-97pc222

Space Systems/LORAL employees inspect solar panels for the GOES-K weat...

Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power sys... More

The Geostationary Operational Environmental Satellite-K (GOES-K) is placed on display for news media representatives at the Astrotech Space Operations LP facility in Titusville. GOES-K, the latest in the current series of advanced geostationary weather satellites in service, is scheduled to be launched into space aboard an Atlas 1 rocket on April 24 from Launch Complex 36, Pad B, Cape Canaveral Air Station. Once in orbit, GOES-K will become GOES-10, joining GOES-8 and GOES-9 in space KSC-97pc477

The Geostationary Operational Environmental Satellite-K (GOES-K) is pl...

The Geostationary Operational Environmental Satellite-K (GOES-K) is placed on display for news media representatives at the Astrotech Space Operations LP facility in Titusville. GOES-K, the latest in the curren... More

The Geostationary Operational Environmental Satellite-K (GOES-K) is placed on display for news media representatives at the Astrotech Space Operations LP facility in Titusville. GOES-K, the latest in the current series of advanced geostationary weather satellites in service, is scheduled to be launched into space aboard an Atlas 1 rocket on April 24 from Launch Complex 36, Pad B, Cape Canaveral Air Station. Once in orbit, GOES-K will become GOES-10, joining GOES-8 and GOES-9 in space KSC-97pc476

The Geostationary Operational Environmental Satellite-K (GOES-K) is pl...

The Geostationary Operational Environmental Satellite-K (GOES-K) is placed on display for news media representatives at the Astrotech Space Operations LP facility in Titusville. GOES-K, the latest in the curren... More

With its prelaunch processing completed, the GOES-K advanced weather satellite awaits encapsulation in the Atlas 1 payload fairing, seen at left rear. GOES-K was prepared for launch at the Astrotech Space Operations LP facility in Titusville. GOES-K will be the third spacecraft to be launched in the advanced series of Geostationary Operational Environmental Satellites (GOES). The GOES satellites are owned and operated by the National Oceanic and Atmospheric Administration (NOAA); NASA manages the design, development and launch of the spacecraft. GOES-K is targeted for an /1997/63-97.htm">April 24 launch</a> aboard a Lockheed Martin Atlas 1 expendable launch vehicle (AC-79) from Launch Complex 36, Pad B, Cape Canaveral Air Station. The launch window opens at 1:50 a.m. and extends to 3:09 a.m. EDT. Once in orbit, GOES-K will become GOES-10, joining GOES-8 and GOES-9 in space KSC-97pc635

With its prelaunch processing completed, the GOES-K advanced weather s...

With its prelaunch processing completed, the GOES-K advanced weather satellite awaits encapsulation in the Atlas 1 payload fairing, seen at left rear. GOES-K was prepared for launch at the Astrotech Space Opera... More

Workers at the Astrotech Space Operations LP facility in Titusville make final checks and adjustments after encapsulating the GOES-K advanced weather satellite in the Atlas 1 payload fairing. GOES-K will be the third spacecraft to be launched in the advanced series of Geostationary Operational Environmental Satellites (GOES). The GOES satellites are owned and operated by the National Oceanic and Atmospheric Administration (NOAA); NASA manages the design, development and launch of the spacecraft. GOES-K is targeted for an /1997/63-97.htm">April 24 launch</a> aboard a Lockheed Martin Atlas 1 expendable launch vehicle (AC-79) from Launch Complex 36, Pad B, Cape Canaveral Air Station. The launch window opens at 1:50 a.m. and extends to 3:09 a.m. EDT. Once in orbit, GOES-K will become GOES-10, joining GOES-8 and GOES-9 in space KSC-97pc637

Workers at the Astrotech Space Operations LP facility in Titusville ma...

Workers at the Astrotech Space Operations LP facility in Titusville make final checks and adjustments after encapsulating the GOES-K advanced weather satellite in the Atlas 1 payload fairing. GOES-K will be the... More

The Atlas 1 payload fairing with the encapsulated GOES-K advanced weather satellite awaits transport to the launch pad. GOES-K was prepared for launch at the Astrotech Space Operations LP facility in Titusville. GOES-K will be the third spacecraft to be launched in the advanced series of Geostationary Operational Environmental Satellites (GOES). The GOES satellites are owned and operated by the National Oceanic and Atmospheric Administration (NOAA); NASA manages the design, development and launch of the spacecraft. GOES-K is targeted for an /1997/63-97.htm">April 24 launch</a> aboard a Lockheed Martin Atlas 1 expendable launch vehicle (AC-79) from Launch Complex 36, Pad B, Cape Canaveral Air Station. The launch window opens at 1:50 a.m. and extends to 3:09 a.m. EDT. Once in orbit, GOES-K will become GOES-10, joining GOES-8 and GOES-9 in space KSC-97pc638

The Atlas 1 payload fairing with the encapsulated GOES-K advanced weat...

The Atlas 1 payload fairing with the encapsulated GOES-K advanced weather satellite awaits transport to the launch pad. GOES-K was prepared for launch at the Astrotech Space Operations LP facility in Titusville... More

Workers at the Astrotech Space Operations LP facility in Titusville make final checks and adjustments after encapsulating the GOES-K advanced weather satellite in the Atlas 1 payload fairing. GOES-K will be the third spacecraft to be launched in the advanced series of Geostationary Operational Environmental Satellites (GOES). The GOES satellites are owned and operated by the National Oceanic and Atmospheric Administration (NOAA); NASA manages the design, development and launch of the spacecraft. GOES-K is targeted for an /1997/63-97.htm">April 24 launch</a> aboard a Lockheed Martin Atlas 1 expendable launch vehicle (AC-79) from Launch Complex 36, Pad B, Cape Canaveral Air Station. The launch window opens at 1:50 a.m. and extends to 3:09 a.m. EDT. Once in orbit, GOES-K will become GOES-10, joining GOES-8 and GOES-9 in space KSC-97pc636

Workers at the Astrotech Space Operations LP facility in Titusville ma...

Workers at the Astrotech Space Operations LP facility in Titusville make final checks and adjustments after encapsulating the GOES-K advanced weather satellite in the Atlas 1 payload fairing. GOES-K will be the... More

The GOES-K advanced weather satellite, already encapsulated in the Atlas 1 payload fairing, is carefully placed on the transporter at Astrotech Space Operations LP facility in Titusville. GOES-K will be the third spacecraft to be launched in the advanced series of Geostationary Operational Environmental Satellites (GOES). The GOES satellites are owned and operated by the National Oceanic and Atmospheric Administration (NOAA); NASA manages the design, development and launch of the spacecraft. GOES-K is targeted for an /1997/63-97.htm">April 24 launch</a> aboard a Lockheed Martin Atlas 1 expendable launch vehicle (AC-79) from Launch Complex 36, Pad B, Cape Canaveral Air Station. The launch window opens at 1:50 a.m. and extends to 3:09 a.m. EDT. Once in orbit, GOES-K will become GOES-10, joining GOES-8 and GOES-9 in space KSC-97pc634

The GOES-K advanced weather satellite, already encapsulated in the Atl...

The GOES-K advanced weather satellite, already encapsulated in the Atlas 1 payload fairing, is carefully placed on the transporter at Astrotech Space Operations LP facility in Titusville. GOES-K will be the thi... More

NASA's Lunar Prospector is taken out of its crate at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena 2 rocket by Lockheed Martin, is designed to provide the first global maps of the Moon's surface compositional elements and its gravitational and magnetic fields. While at Astrotech, Lunar Prospector will be fueled with its attitude control propellant and then mated to a Trans-Lunar Injection Stage which is a solid propellant upper stage motor. The combination will next be spin tested to verify proper balance, then encapsulated into an Athena nose fairing. Then the Lunar Prospector will be transported from Astrotech to Cape Canaveral Air Station and mated to an Athena rocket. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m KSC-97PC1759

NASA's Lunar Prospector is taken out of its crate at Astrotech, a comm...

NASA's Lunar Prospector is taken out of its crate at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena 2 rocket by Lockh... More

NASA's Lunar Prospector is taken out of its crate at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena 2 rocket by Lockheed Martin, is designed to provide the first global maps of the Moon's surface compositional elements and its gravitational and magnetic fields. While at Astrotech, Lunar Prospector will be fueled with its attitude control propellant and then mated to a Trans-Lunar Injection Stage which is a solid propellant upper stage motor. The combination will next be spin tested to verify proper balance, then encapsulated into an Athena nose fairing. Then the Lunar Prospector will be transported from Astrotech to Cape Canaveral Air Station and mated to an Athena rocket. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m KSC-97PC1760

NASA's Lunar Prospector is taken out of its crate at Astrotech, a comm...

NASA's Lunar Prospector is taken out of its crate at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena 2 rocket by Lockh... More

Lockheed Martin Missile Systems integration and test staff join NASA’s Lunar Prospector spacecraft to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m KSC-97PC1806

Lockheed Martin Missile Systems integration and test staff join NASA’s...

Lockheed Martin Missile Systems integration and test staff join NASA’s Lunar Prospector spacecraft to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, i... More

Lockheed Martin Missile Systems integration and test staff join NASA’s Lunar Prospector spacecraft atop the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m KSC-97PC1807

Lockheed Martin Missile Systems integration and test staff join NASA’s...

Lockheed Martin Missile Systems integration and test staff join NASA’s Lunar Prospector spacecraft atop the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility,... More

Lockheed Martin Missile Systems technicians prepare NASA’s Lunar Prospector spacecraft for mating to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m KSC-97PC1803

Lockheed Martin Missile Systems technicians prepare NASA’s Lunar Prosp...

Lockheed Martin Missile Systems technicians prepare NASA’s Lunar Prospector spacecraft for mating to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in... More

Lockheed Martin Missile Systems integration and test staff move NASA’s Lunar Prospector spacecraft over the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m KSC-97PC1805

Lockheed Martin Missile Systems integration and test staff move NASA’s...

Lockheed Martin Missile Systems integration and test staff move NASA’s Lunar Prospector spacecraft over the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility,... More

NASA’s Lunar Prospector is prepared for mating to the Trans Lunar Injection Module of the spacecraft, seen in the background, at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m KSC-97PC1802

NASA’s Lunar Prospector is prepared for mating to the Trans Lunar Inje...

NASA’s Lunar Prospector is prepared for mating to the Trans Lunar Injection Module of the spacecraft, seen in the background, at Astrotech, a commercial payload processing facility, in Titusville, Fla. The smal... More

Lockheed Martin Missile Systems integration and test staff prepare NASA’s Lunar Prospector spacecraft for mating to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processing facility, in Titusville, Fla. The small robotic spacecraft, to be launched for NASA on an Athena II launch vehicle by Lockheed Martin, is designed to provide the first global maps of the Moon’s surface compositional elements and its gravitational and magnetic fields. The launch of Lunar Prospector is scheduled for Jan. 5, 1998 at 8:31 p.m KSC-97PC1804

Lockheed Martin Missile Systems integration and test staff prepare NAS...

Lockheed Martin Missile Systems integration and test staff prepare NASA’s Lunar Prospector spacecraft for mating to the Trans Lunar Injection Module of the spacecraft at Astrotech, a commercial payload processi... More

The GOES-L weather satellite, aboard the trailer, is moved into a building at Astrotech in Titusville for testing of the imaging system, instrumentation, communications and power systems. The satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in March or April, is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-98pc1874

The GOES-L weather satellite, aboard the trailer, is moved into a buil...

The GOES-L weather satellite, aboard the trailer, is moved into a building at Astrotech in Titusville for testing of the imaging system, instrumentation, communications and power systems. The satellite, to be l... More

The GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in March or April, is covered and waiting on a semi-trailer truck (in background) that will transport it to Astrotech in Titusville for final testing. It arrived aboard the C-5 air cargo plane (seen in foreground) at CCAS. GOES-L, the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging GOES East weather satellite KSC-98pc1873

The GOES-L weather satellite, to be launched from Cape Canaveral Air S...

The GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in March or April, is covered and waiting on a semi-trailer truck (in background) that will transpor... More

Loral workers at Astrotech, Titusville, Fla., stand back as they deploy the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc17

Loral workers at Astrotech, Titusville, Fla., stand back as they deplo...

Loral workers at Astrotech, Titusville, Fla., stand back as they deploy the solar panels of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite is to be launched from Cape Canav... More

The solar panels on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be performed at the Astrotech facility, Titusville, Fla. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc19

The solar panels on the <a href="http://www-pao.ksc.nasa.gov/kscpao/ca...

The solar panels on the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be ... More

At Astrotech, in Titusville, Fla., Loral workers check trim tab deployment on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. Other tests to be performed are the imaging system, instrumentation, communications and power systems. The satellite is to be launched from Cape Canaveral Air Station aboard a Lockheed Martin Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc22

At Astrotech, in Titusville, Fla., Loral workers check trim tab deploy...

At Astrotech, in Titusville, Fla., Loral workers check trim tab deployment on the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. Other tests to be performed are the imaging system, instrumen... More

At Astrotech, in Titusville, Fla., Loral workers check trim tab deployment on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. Other tests to be performed are the imaging system, instrumentation, communications and power systems. The satellite is to be launched from Cape Canaveral Air Station aboard a Lockheed Martin Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc21

At Astrotech, in Titusville, Fla., Loral workers check trim tab deploy...

At Astrotech, in Titusville, Fla., Loral workers check trim tab deployment on the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. Other tests to be performed are the imaging system, instrumen... More

Loral workers at Astrotech, Titusville, Fla., deploy one of the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc16

Loral workers at Astrotech, Titusville, Fla., deploy one of the solar ...

Loral workers at Astrotech, Titusville, Fla., deploy one of the solar panels of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboar... More

Loral workers at Astrotech, Titusville, Fla., check out the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc18

Loral workers at Astrotech, Titusville, Fla., check out the solar pane...

Loral workers at Astrotech, Titusville, Fla., check out the solar panels of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an... More

Loral workers at Astrotech, Titusville, Fla., perform an illumination test for circuitry verification on the solar panel of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc26

Loral workers at Astrotech, Titusville, Fla., perform an illumination ...

Loral workers at Astrotech, Titusville, Fla., perform an illumination test for circuitry verification on the solar panel of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite i... More

During an illumination test, a Loral worker at Astrotech, Titusville, Fla., verifies circuitry on the solar panel of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc30

During an illumination test, a Loral worker at Astrotech, Titusville, ...

During an illumination test, a Loral worker at Astrotech, Titusville, Fla., verifies circuitry on the solar panel of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite is to be... More

A Loral worker at Astrotech, Titusville, Fla., assists with an illumination test for circuitry verification on the solar panel of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc27

A Loral worker at Astrotech, Titusville, Fla., assists with an illumin...

A Loral worker at Astrotech, Titusville, Fla., assists with an illumination test for circuitry verification on the solar panel of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satel... More

Workers (right) at Astrotech, Titusville, Fla., arrange the lights for an illumination test on the solar panel of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The test is verifying the circuitry on the panel. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc29

Workers (right) at Astrotech, Titusville, Fla., arrange the lights for...

Workers (right) at Astrotech, Titusville, Fla., arrange the lights for an illumination test on the solar panel of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The test is verifying the... More

During an illumination test, a Loral worker at Astrotech, Titusville, Fla., verifies circuitry on the solar panel of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc28

During an illumination test, a Loral worker at Astrotech, Titusville, ...

During an illumination test, a Loral worker at Astrotech, Titusville, Fla., verifies circuitry on the solar panel of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite is to be... More

With the light casting a rosy glow in a specially built clean room at Astrotech, Titusville, Fla., Loral technician Roberto Caballero tests the deployment of the sounder instrument's cooler cover door on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The sounder, one of two meteorological instruments on the satellite, measures temperature and moisture in a vertical column of air from the satellite to Earth. Its findings will help forecast weather. GOES-L, which is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March, is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures as well as perform the atmospheric sounding. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc50

With the light casting a rosy glow in a specially built clean room at ...

With the light casting a rosy glow in a specially built clean room at Astrotech, Titusville, Fla., Loral technician Roberto Caballero tests the deployment of the sounder instrument's cooler cover door on the ks... More

With the light casting a rosy glow in a specially built clean room at Astrotech, Titusville, Fla., Loral technicians Roberto Caballero (left) and Paul Giordano (right) maneuver the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite into position for testing the deployment of the sounder instrument's cooler cover door. The sounder, one of two meteorological instruments on the satellite, measures temperature and moisture in a vertical column of air from the satellite to Earth. Its findings will help forecast weather. GOES-L, which is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March, is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures as well as perform the atmospheric sounding. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc51

With the light casting a rosy glow in a specially built clean room at ...

With the light casting a rosy glow in a specially built clean room at Astrotech, Titusville, Fla., Loral technicians Roberto Caballero (left) and Paul Giordano (right) maneuver the kscpao/captions/subjects/goes... More

In a specially built clean room at Astrotech, Titusville, Fla., Loral technician Roberto Caballero checks the position of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite before beginning deployment of the sounder instrument's cooler cover door. The sounder, one of two meteorological instruments on the satellite, measures temperature and moisture in a vertical column of air from the satellite to Earth. Its findings will help forecast weather. GOES-L, which is to be launched from Cape Canaveral Air Station aboard an Atlas II rocket in late March, is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures as well as perform the atmospheric sounding. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc52

In a specially built clean room at Astrotech, Titusville, Fla., Loral ...

In a specially built clean room at Astrotech, Titusville, Fla., Loral technician Roberto Caballero checks the position of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite before beginning d... More

At Astrotech, Titusville, Fla., Lora Lawrence, with Johnson Space Center, makes a bonding check on the International Cargo Carrier that will be used during future International Space Station (ISS) assembly missions. The nonpressurized ICC fits inside the payload bay of the orbiter. The ICC will carry the SPACEHAB Oceaneering Space System Box (SHOSS), a logistics items carrier. SHOSS can hold a maximum of 400 pounds of equipment and will carry items to be used during STS-96 and future ISS assembly flights. Also aboard the ICC will be the ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on Unity for use during future ISS assembly missions. The ICC will fly on mission STS-96, targeted for launch on May 20 KSC-99pp0240

At Astrotech, Titusville, Fla., Lora Lawrence, with Johnson Space Cent...

At Astrotech, Titusville, Fla., Lora Lawrence, with Johnson Space Center, makes a bonding check on the International Cargo Carrier that will be used during future International Space Station (ISS) assembly miss... More

At Astrotech, Titusville, Fla., checking the International Cargo Carrier that will be used during future International Space Station (ISS) assembly missions are (left to right) Manfred Nordhoff, with Daimler-Chrysler Aerospace (DASA); Lora Lawrence, with Johnson Space Center; Robert Wilkes, with Lockheed Martin; and (below) Harald Schnier, with DASA. The ICC fits inside the payload bay of the orbiter. The ICC will carry the SPACEHAB Oceaneering Space System Box (SHOSS), a logistics items carrier. SHOSS can hold a maximum of 400 pounds of equipment and will carry items to be used during STS-96 and future ISS assembly flights. Also aboard the ICC will be the ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on Unity for use during future ISS assembly missions. The ICC will fly on mission STS-96, targeted for launch on May 20 KSC-99pp0238

At Astrotech, Titusville, Fla., checking the International Cargo Carri...

At Astrotech, Titusville, Fla., checking the International Cargo Carrier that will be used during future International Space Station (ISS) assembly missions are (left to right) Manfred Nordhoff, with Daimler-Ch... More

At Astrotech, Titusville, Fla., discussing the International Cargo Carrier (ICC) overhead are Charles Franca, with Johnson Space Center (JSC); Robert Wilkes, with Lockheed Martin; Lora Lawrence, with JSC; Carl Figiel and Harald Schnier, with Daimler-Chrysler Aerospace (DASA). The nonpressurized ICC fits inside the payload bay of the orbiter. The ICC will carry the SPACEHAB Oceaneering Space System Box (SHOSS), a logistics items carrier. SHOSS can hold a maximum of 400 pounds of equipment and will carry items to be used during STS-96 and future ISS assembly flights. Also aboard the ICC will be the ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on Unity for use during future ISS assembly missions. The ICC will fly on mission STS-96, targeted for launch on May 20 KSC-99pp0241

At Astrotech, Titusville, Fla., discussing the International Cargo Car...

At Astrotech, Titusville, Fla., discussing the International Cargo Carrier (ICC) overhead are Charles Franca, with Johnson Space Center (JSC); Robert Wilkes, with Lockheed Martin; Lora Lawrence, with JSC; Carl ... More

At Astrotech, Titusville, Fla., an umbrella-topped crane is secured to an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the International Space Station's Unity module for use during future ISS assembly missions. Gathered around the OTD and crane are (left to right) Ben Greene (kneeling), with Lockheed Martin; Michael Slataper, with Ratheon; Charles Franca, with Johnson Space Center; Robert Wilkes, with Lockheed Martin; Manfred Nordhoff (back to camera), with Daimler-Chrysler Aerospace (DASA); and Carl Figiel and Harald Schnier (far right), both with (DASA). The OTD will be attached to the nonpressurized International Cargo Carrier (ICC) in the background. The ICC fits inside the payload bay of the orbiter. The ICC will also carry the SPACEHAB Oceaneering Space System Box (SHOSS), a logistics items carrier. SHOSS can hold a maximum of 400 pounds of equipment and will carry items to be used during STS-96 and future ISS assembly flights. The ICC will fly on mission STS-96, targeted for launch on May 20 KSC-99pp0242

At Astrotech, Titusville, Fla., an umbrella-topped crane is secured to...

At Astrotech, Titusville, Fla., an umbrella-topped crane is secured to an ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on the International Space Station's Unity module for use during futur... More

At Astrotech, Titusville, Fla., Harald Schnier and Manfred Nordhoff, with Daimler-Chrysler Aerospace (DASA), look over the International Cargo Carrier that will be used during future International Space Station (ISS) assembly missions. On top is Robert Wilkes, with Lockheed Martin. Behind the ladder in the background is Ben Greene, with Lockheed Martin. The nonpressurized ICC fits inside the payload bay of the orbiter. The ICC will carry the SPACEHAB Oceaneering Space System Box (SHOSS), a logistics items carrier. SHOSS can hold a maximum of 400 pounds of equipment and will carry items to be used during STS-96 and future ISS assembly flights. Also aboard the ICC will be the ORU Transfer Device (OTD), a U.S.-built crane that will be stowed on Unity for use during future ISS assembly missions. The ICC will fly on mission STS-96, targeted for launch on May 20 KSC-99pp0239

At Astrotech, Titusville, Fla., Harald Schnier and Manfred Nordhoff, w...

At Astrotech, Titusville, Fla., Harald Schnier and Manfred Nordhoff, with Daimler-Chrysler Aerospace (DASA), look over the International Cargo Carrier that will be used during future International Space Station... More

At Astrotech, Titusville, Fla., three workers watch as the overhead crane lifts and moves the ORU Transfer Device (OTD) to the top of the International Cargo Carrier (ICC). From left are Lora Laurence, with Johnson Space Center; Robert Wilkes, with Lockheed Martin; and Manfred Nordhoff, with Daimler-Chrysler Aerospace (DASA). The OTD is a U.S.-built crane that will be stowed on the International Space Station's Unity module for use during future ISS assembly missions. The nonpressurized ICC fits inside the payload bay of the orbiter. The ICC will also carry the SPACEHAB Oceaneering Space System Box (SHOSS), a logistics items carrier. SHOSS can hold a maximum of 400 pounds of equipment and will carry items to be used during STS-96 and future ISS assembly flights. The ICC will fly on mission STS-96, targeted for launch on May 20 KSC-99pp0243

At Astrotech, Titusville, Fla., three workers watch as the overhead cr...

At Astrotech, Titusville, Fla., three workers watch as the overhead crane lifts and moves the ORU Transfer Device (OTD) to the top of the International Cargo Carrier (ICC). From left are Lora Laurence, with Joh... More

At Astrotech in Titusville, Fla., members of two Shuttle crews take a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, Pilot Rick Douglas Husband, and Mission Specialist Julie Payette; next to them is STS-101 Mission Specialist Yuri Ivanovich Malenchenko, with the Russian Space Agency. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999 KSC-99pp0345

At Astrotech in Titusville, Fla., members of two Shuttle crews take a ...

At Astrotech in Titusville, Fla., members of two Shuttle crews take a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the Internati... More

At Astrotech in Titusville, Fla., STS-96 Mission Specialists Tamara E. Jernigan and Daniel T. Barry take turns working with a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Technicians around the table observe. The STS-96 crew is taking part in a Crew Equipment Interface Test. Other members participating are Commander Kent V. Rominger, Pilot Rick Douglas Husband, and Mission Specialists Julie Payette, with the Canadian Space Agency, and Valery Ivanovich Tokarev, with the Russian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999 KSC-99pp0348

At Astrotech in Titusville, Fla., STS-96 Mission Specialists Tamara E....

At Astrotech in Titusville, Fla., STS-96 Mission Specialists Tamara E. Jernigan and Daniel T. Barry take turns working with a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russi... More

At Astrotech in Titusville, Fla., members of two Shuttle crews look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left are STS-96 Mission Specialist Julie Payette and Daniel T. Barry, Commander Kent V. Rominger and Mission Specialist Tamara E. Jernigan; three technicians from DaimlerChrysler Aerospace; (in the background, facing right) STS-101 Commander James Donald Halsell Jr.; STS-101 Mission Specialists Yuri Ivanovich Malenchenko, with the Russian Space Agency, and Edward Tsang Lu; and two more technicians from DaimlerChrysler. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999 KSC-99pp0343

At Astrotech in Titusville, Fla., members of two Shuttle crews look at...

At Astrotech in Titusville, Fla., members of two Shuttle crews look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space St... More

At Astrotech in Titusville, Fla., members of two Shuttle crews get a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). At left are STS-96 Mission Specialist Daniel T. Barry and Pilot Rick Douglas Husband. At center, STS-96 Mission Specialist Tamara E. Jernigan gives her attention to a technician with DaimlerChrysler while STS-101 Mission Specialist Edward Tsang Lu looks on. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999 KSC-99pp0344

At Astrotech in Titusville, Fla., members of two Shuttle crews get a c...

At Astrotech in Titusville, Fla., members of two Shuttle crews get a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the Internatio... More

At Astrotech in Titusville, Fla., STS-96 Mission Speciaists Daniel T. Barry (left), Julie Payette (center, with camera), and Tamara E. Jernigan (right, pointing) get a close look at one of the payloads on their upcoming mission. Other crew members are Commander Kent V. Rominger, and Mission Specialists Ellen Ochoa and Valery Ivanovich Tokarev, with the Russian Space Agency. Payette is with the Canadian Space Agency. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS); the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999 KSC-99pp0347

At Astrotech in Titusville, Fla., STS-96 Mission Speciaists Daniel T. ...

At Astrotech in Titusville, Fla., STS-96 Mission Speciaists Daniel T. Barry (left), Julie Payette (center, with camera), and Tamara E. Jernigan (right, pointing) get a close look at one of the payloads on their... More

Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-101 Mission Specialist Jeffrey N. Williams and Yuri Ivanovich Malenchenko, with the Russian Space Agency; STS-96 Mission Specialist Tamara E. Jernigan; STS-101 Mission Specialist Edward Tsang Lu (leaning over); a technician with RSC Energia of Korolev, Russia; Manfred Nordhoff, with DaimlerChrysler Aerospace; STS-96 Mission Specialist Daniel T. Barry; and another technician with RSC Energia. They are looking at components of the Russian cargo crane, Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace of Bremen and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999 KSC-99pp0342

Two Shuttle crews take part in familiarization activities at Astrotech...

Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-101 Mission Specialist Jeffrey N. Williams and Yuri Ivanovich Malenchenko, with the Russian Space Age... More

Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, and Pilot Rick Douglas Husband; plus STS-101 Mission Specialists Edward Tsang Lu and Jeffrey N. Williams. They are looking at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace of Bremen and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999 KSC-99pp0341

Two Shuttle crews take part in familiarization activities at Astrotech...

Two Shuttle crews take part in familiarization activities at Astrotech in Titusville, Fla. From left are STS-96 Mission Specialists Daniel T. Barry and Tamara E. Jernigan, and Pilot Rick Douglas Husband; plus S... More

At Astrotech in Titusville, Fla., technicians with DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia, maneuver a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). The Strehla has been the focus for two Shuttle crews, STS-96 who are at KSC for a Crew Equipment Interface Test, and STS-101, for payload familiarization. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999 KSC-99pp0349

At Astrotech in Titusville, Fla., technicians with DaimlerChrysler Aer...

At Astrotech in Titusville, Fla., technicians with DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia, maneuver a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian... More

At Astrotech in Titusville, Fla., members of two Shuttle crews take a close look at a component of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). From left, they are STS-101 Mission Specialist Edward Tsang Lu, plus STS-96 Mission Specialist Julie Payette and Pilot Rick Douglas Husband. Payette represents the Canadian Space Agency. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999 KSC-99pp0346

At Astrotech in Titusville, Fla., members of two Shuttle crews take a ...

At Astrotech in Titusville, Fla., members of two Shuttle crews take a close look at a component of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the Internat... More

At Astrotech, in Titusville, Fla., the GOES-L satellite sits ready for a media showing. The GOES-L is due to be launched May 15 from Launch Pad 36A aboard an Atlas IIA rocket. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0395

At Astrotech, in Titusville, Fla., the GOES-L satellite sits ready for...

At Astrotech, in Titusville, Fla., the GOES-L satellite sits ready for a media showing. The GOES-L is due to be launched May 15 from Launch Pad 36A aboard an Atlas IIA rocket. Once in orbit, the satellite will ... More

At Astrotech, in Titusville, Fla., GOES-L Program Manager Gerald Dittberner, with the National Oceanic and Atmospheric Administration (NOAA) talks with a journalist during a media showing of the GOES-L satellite in the background. The GOES-L is due to be launched May 15 from Launch Pad 36A aboard an Atlas IIA rocket. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0394

At Astrotech, in Titusville, Fla., GOES-L Program Manager Gerald Dittb...

At Astrotech, in Titusville, Fla., GOES-L Program Manager Gerald Dittberner, with the National Oceanic and Atmospheric Administration (NOAA) talks with a journalist during a media showing of the GOES-L satellit... More

Workers at Astrotech, in Titusville, Fla., prepare the GOES-L satellite for a media showing. The GOES-L is due to be launched May 15 from Launch Pad 36A aboard an Atlas IIA rocket. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0393

Workers at Astrotech, in Titusville, Fla., prepare the GOES-L satellit...

Workers at Astrotech, in Titusville, Fla., prepare the GOES-L satellite for a media showing. The GOES-L is due to be launched May 15 from Launch Pad 36A aboard an Atlas IIA rocket. Once in orbit, the satellite ... More

Workers at Astrotech, Titusville, Fla., move the second half of the fairing to finish encapsulating the GOES-L weather satellite before its transfer to Launch Pad 36A, Cape Canaveral Air Station. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May KSC-99pp0492

Workers at Astrotech, Titusville, Fla., move the second half of the fa...

Workers at Astrotech, Titusville, Fla., move the second half of the fairing to finish encapsulating the GOES-L weather satellite before its transfer to Launch Pad 36A, Cape Canaveral Air Station. The fourth of ... More

Workers at Astrotech, Titusville, Fla., prepare the GOES-L weather satellite for encapsulation in the fairing (left and right) before its transfer to Launch Pad 36A, Cape Canaveral Air Station. The mounted equipment on top of the satellite is a telemetry and command antenna. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May KSC-99pp0491

Workers at Astrotech, Titusville, Fla., prepare the GOES-L weather sat...

Workers at Astrotech, Titusville, Fla., prepare the GOES-L weather satellite for encapsulation in the fairing (left and right) before its transfer to Launch Pad 36A, Cape Canaveral Air Station. The mounted equi... More

At Astrotech, Titusville, Fla., the GOES-L weather satellite undergoes encapsulation in the first half of the fairing before its transfer to Launch Pad 36A, Cape Canaveral Air Station. At right is the second half of the fairing. The mounted equipment on top of the satellite is a telemetry and command antenna. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May KSC-99pp0490

At Astrotech, Titusville, Fla., the GOES-L weather satellite undergoes...

At Astrotech, Titusville, Fla., the GOES-L weather satellite undergoes encapsulation in the first half of the fairing before its transfer to Launch Pad 36A, Cape Canaveral Air Station. At right is the second ha... More

The GOES-L weather satellite sits on a workstand at Astrotech, Titusville, Fla., ready to be encapsulated for its transfer to Launch Pad 36A, Cape Canaveral Air Station. On the left side is the folded, two-panel solar array; on the adjoining side is a white box, which is the UHF antenna. Above the box is the S-band transmit antenna and receive antenna. Between them protrudes a search and rescue antenna. At right are the sounder (top) and imager (bottom). The mounted equipment on top of the unit is a telemetry and command antenna. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space KSC-99pp0489

The GOES-L weather satellite sits on a workstand at Astrotech, Titusvi...

The GOES-L weather satellite sits on a workstand at Astrotech, Titusville, Fla., ready to be encapsulated for its transfer to Launch Pad 36A, Cape Canaveral Air Station. On the left side is the folded, two-pane... More

At Astrotech, Titusville, Fla., the GOES-L weather satellite sits on a workstand, ready to be encapsulated for its transfer to Launch Pad 36A, Cape Canaveral Air Station. GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space KSC-99pp0488

At Astrotech, Titusville, Fla., the GOES-L weather satellite sits on a...

At Astrotech, Titusville, Fla., the GOES-L weather satellite sits on a workstand, ready to be encapsulated for its transfer to Launch Pad 36A, Cape Canaveral Air Station. GOES is scheduled for launch aboard a L... More

At Astrotech, Titusville, Fla., the fully encapsulated GOES-L weather satellite is ready for transfer to Launch Pad 36A, Cape Canaveral Air Station. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May KSC-99pp0493

At Astrotech, Titusville, Fla., the fully encapsulated GOES-L weather ...

At Astrotech, Titusville, Fla., the fully encapsulated GOES-L weather satellite is ready for transfer to Launch Pad 36A, Cape Canaveral Air Station. The fourth of a new advanced series of geostationary weather ... More

After being transported from Astrotech, in Titusville, Fla., the encapsulated GOES-L weather satellite arrives at Launch Pad 36A, Cape Canaveral Air Station, to be mated to a Lockheed Martin Atlas II rocket. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch later this month KSC-99pp0497

After being transported from Astrotech, in Titusville, Fla., the encap...

After being transported from Astrotech, in Titusville, Fla., the encapsulated GOES-L weather satellite arrives at Launch Pad 36A, Cape Canaveral Air Station, to be mated to a Lockheed Martin Atlas II rocket. Th... More

Dirt flies during a ground-breaking ceremony to kick off Astrotech Space Operations' construction of a new satellite preparation facility to support the Delta IV, Boeing's winning entrant in the Air Force Evolved Expendable Launch Vehicle (EELV) Program. Wielding shovels are (from left to right) Tom Alexico; Chet Lee, chairman, Astrotech Space Operations; Gen. Forrest McCartney, vice president, Launch Operations, Lockheed Martin; Richard Murphy, director, Delta Launch Operations, The Boeing Company; Keith Wendt; Toby Voltz; Loren Shriver, deputy director, Launch & Payload Processing, Kennedy Space Center; Truman Scarborough, Brevard County commissioner; U.S. Representative 15th Congressional District David Weldon; Ron Swank; and watching the action at right is George Baker, president, Astrotech Space Operations. Astrotech is located in Titusville, Fla. It is a wholly owned subsidiary of SPACEHAB, Inc., and has been awarded a 10-year contract to provide payload processing services for The Boeing Company. The facility will enable Astrotech to support the full range of satellite sizes planned for launch aboard Delta II, III and IV launch vehicles, as well as the Atlas V, Lockheed Martin's entrant in the EELV Program. The Atlas V will be used to launch satellites for government, including NASA, and commercial customers KSC-99pp1295

Dirt flies during a ground-breaking ceremony to kick off Astrotech Spa...

Dirt flies during a ground-breaking ceremony to kick off Astrotech Space Operations' construction of a new satellite preparation facility to support the Delta IV, Boeing's winning entrant in the Air Force Evolv... More

At the KSC Shuttle Landing Facility, the GOES-M satellite, encased in a container, begins its trek to Astrotech in Titusville, Fla., where it will undergo final testing. The GOES-M (Geostationary Operational Environmental Satellite, I-M Series) provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking, and meteorological research. The satellite is scheduled to be launched on an Atlas-IIA booster, with a Centaur upper stage, July 12 from Launch Pad 36-A, Cape Canaveral Air Force Station KSC01pp0785

At the KSC Shuttle Landing Facility, the GOES-M satellite, encased in ...

At the KSC Shuttle Landing Facility, the GOES-M satellite, encased in a container, begins its trek to Astrotech in Titusville, Fla., where it will undergo final testing. The GOES-M (Geostationary Operational E... More

At the KSC Shuttle Landing Facility, the GOES-M satellite is offloaded from the yawning mouth of the C-5 aircraft. It will be transferred to Astrotech in Titusville, Fla., for final testing. The GOES-M (Geostationary Operational Environmental Satellite, I-M Series) provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking, and meteorological research. The satellite is scheduled to be launched on an Atlas-IIA booster, with a Centaur upper stage, July 12 from Launch Pad 36-A, Cape Canaveral Air Force Station KSC01pp0784

At the KSC Shuttle Landing Facility, the GOES-M satellite is offloaded...

At the KSC Shuttle Landing Facility, the GOES-M satellite is offloaded from the yawning mouth of the C-5 aircraft. It will be transferred to Astrotech in Titusville, Fla., for final testing. The GOES-M (Geosta... More

At the KSC Shuttle Landing Facility, a truck begins offloading the container with the GOES-M satellite from the yawning mouth of the C-5 aircraft. It will be transferred to Astrotech in Titusville, Fla., for final testing. The GOES-M (Geostationary Operational Environmental Satellite, I-M Series) provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking, and meteorological research. The satellite is scheduled to be launched on an Atlas-IIA booster, with a Centaur upper stage, July 12 from Launch Pad 36-A, Cape Canaveral Air Force Station KSC01pp0783

At the KSC Shuttle Landing Facility, a truck begins offloading the con...

At the KSC Shuttle Landing Facility, a truck begins offloading the container with the GOES-M satellite from the yawning mouth of the C-5 aircraft. It will be transferred to Astrotech in Titusville, Fla., for f... More

Workers at Astrotech, Titusville, Fla., work on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is undergoing testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0799

Workers at Astrotech, Titusville, Fla., work on the GOES-M satellite. ...

Workers at Astrotech, Titusville, Fla., work on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorolog... More

At Astrotech, Titusville, Fla., workers look over the GOES-M satellite after removal of its protective cover. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite will undergo testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0798

At Astrotech, Titusville, Fla., workers look over the GOES-M satellite...

At Astrotech, Titusville, Fla., workers look over the GOES-M satellite after removal of its protective cover. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasti... More

At Astrotech, Titusville, Fla., the GOES-M (Geostationary Operational Environmental Satellite) satellite is tilted on a workstand so that workers can remove part of the protective cover. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite will undergo testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0796

At Astrotech, Titusville, Fla., the GOES-M (Geostationary Operational ...

At Astrotech, Titusville, Fla., the GOES-M (Geostationary Operational Environmental Satellite) satellite is tilted on a workstand so that workers can remove part of the protective cover. The GOES-M provides wea... More

At Astrotech, Titusville, Fla., the GOES-M (Geostationary Operational Environmental Satellite) satellite is tilted on a workstand so that workers can remove the rest of the protective cover. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite will undergo testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0797

At Astrotech, Titusville, Fla., the GOES-M (Geostationary Operational ...

At Astrotech, Titusville, Fla., the GOES-M (Geostationary Operational Environmental Satellite) satellite is tilted on a workstand so that workers can remove the rest of the protective cover. The GOES-M provides... More

With the GOES-M satellite tilted on a workstand at Astrotech, Titusville, Fla, workers check out a part of the underside. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is undergoing testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0801

With the GOES-M satellite tilted on a workstand at Astrotech, Titusvil...

With the GOES-M satellite tilted on a workstand at Astrotech, Titusville, Fla, workers check out a part of the underside. The GOES-M provides weather imagery and quantitative sounding data used to support weath... More

KENNEDY SPACE CENTER, FLA. -- After arrival at Astrotech, Titusville, Fla., the GOES-M (Geostationary Operational Environmental Satellite) is attached to an overhead crane. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite will undergo testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0794

KENNEDY SPACE CENTER, FLA. -- After arrival at Astrotech, Titusville, ...

KENNEDY SPACE CENTER, FLA. -- After arrival at Astrotech, Titusville, Fla., the GOES-M (Geostationary Operational Environmental Satellite) is attached to an overhead crane. The GOES-M provides weather imagery a... More

At Astrotech, Titusville, Fla., an overhead crane lifts the GOES-M (Geostationary Operational Environmental Satellite) from the transporter. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite will undergo testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0795

At Astrotech, Titusville, Fla., an overhead crane lifts the GOES-M (Ge...

At Astrotech, Titusville, Fla., an overhead crane lifts the GOES-M (Geostationary Operational Environmental Satellite) from the transporter. The GOES-M provides weather imagery and quantitative sounding data us... More

At Astrotech, Titusville, Fla., the GOES-M satellite is lifted at an angle on a workstand. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0803

At Astrotech, Titusville, Fla., the GOES-M satellite is lifted at an a...

At Astrotech, Titusville, Fla., the GOES-M satellite is lifted at an angle on a workstand. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative sounding data us... More

While an overhead crane lifts the GOES-M satellite at Astrotech, Titusville, Fla., workers check the underside. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is undergoing testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0800

While an overhead crane lifts the GOES-M satellite at Astrotech, Titus...

While an overhead crane lifts the GOES-M satellite at Astrotech, Titusville, Fla., workers check the underside. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecas... More

At Astrotech, Titusville, Fla., a worker (right) turns the GOES-M satellite, bringing its side into view. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is undergoing testing at Astrotech before its scheduled launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0802

At Astrotech, Titusville, Fla., a worker (right) turns the GOES-M sate...

At Astrotech, Titusville, Fla., a worker (right) turns the GOES-M satellite, bringing its side into view. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, ... More

Workers at Astrotech, Titusville, Fla., deploy the magnetometer boom on the GOES-M satellite. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0810

Workers at Astrotech, Titusville, Fla., deploy the magnetometer boom o...

Workers at Astrotech, Titusville, Fla., deploy the magnetometer boom on the GOES-M satellite. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative sounding data... More

Workers at Astrotech, Titusville, Fla., prepare to open the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC-01pp0873

Workers at Astrotech, Titusville, Fla., prepare to open the solar pane...

Workers at Astrotech, Titusville, Fla., prepare to open the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe st... More

Workers (at left) at Astrotech, Titusville, Fla., observe the inside of the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC-01pp0877

Workers (at left) at Astrotech, Titusville, Fla., observe the inside o...

Workers (at left) at Astrotech, Titusville, Fla., observe the inside of the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather foreca... More

At Astrotech, Titusville, Fla., a worker checks components of the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC-01pp0881

At Astrotech, Titusville, Fla., a worker checks components of the GOES...

At Astrotech, Titusville, Fla., a worker checks components of the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking ... More

Workers at Astrotech, Titusville, Fla., look at components on the GOES-M satellite after opening the solar panel. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC-01pp0879

Workers at Astrotech, Titusville, Fla., look at components on the GOES...

Workers at Astrotech, Titusville, Fla., look at components on the GOES-M satellite after opening the solar panel. The GOES-M provides weather imagery and quantitative sounding data used to support weather forec... More

Workers at Astrotech, Titusville, Fla., confer about their findings after opening the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC-01pp0880

Workers at Astrotech, Titusville, Fla., confer about their findings af...

Workers at Astrotech, Titusville, Fla., confer about their findings after opening the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weat... More

Workers at Astrotech, Titusville, Fla., check the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC-01pp0875

Workers at Astrotech, Titusville, Fla., check the solar panel on the G...

Workers at Astrotech, Titusville, Fla., check the solar panel on the GOES-M satellite. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracki... More

Workers at Astrotech, Titusville, Fla., observe the solar panel on the GOES-M satellite as they open it. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC-01pp0876

Workers at Astrotech, Titusville, Fla., observe the solar panel on the...

Workers at Astrotech, Titusville, Fla., observe the solar panel on the GOES-M satellite as they open it. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, s... More

Workers at Astrotech, Titusville, Fla., begin deploying the magnetometer boom on the GOES-M satellite. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0809

Workers at Astrotech, Titusville, Fla., begin deploying the magnetomet...

Workers at Astrotech, Titusville, Fla., begin deploying the magnetometer boom on the GOES-M satellite. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative soun... More

Workers at Astrotech, Titusville, Fla., begin deploying the magnetometer boom on the GOES-M satellite. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative sounding data used to support weather forecasting, severe storm tracking and meteorological research. The satellite is scheduled to launch July 12 on an Atlas-IIA booster, Centaur upper stage from Cape Canaveral Air Force Station KSC01pp0808

Workers at Astrotech, Titusville, Fla., begin deploying the magnetomet...

Workers at Astrotech, Titusville, Fla., begin deploying the magnetometer boom on the GOES-M satellite. The satellite is undergoing testing at Astrotech. The GOES-M provides weather imagery and quantitative soun... More

The newest Geostationary Operational Environmental Satellite-M (GOES-M) satellite is in the spotlight at Astrotech, in Titusville, for the media to see the last in the current series of advanced geostationary weather satellites in service. GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager that can be used in forecasting space weather, the effects of solar storms that create electromagnetic disturbances on earth that affect other satellites, communications and power grids. GOES is scheduled to launch from Cape Canaveral Air Force Station on an Atlas II rocket in July KSC-01pp1021

The newest Geostationary Operational Environmental Satellite-M (GOES-M...

The newest Geostationary Operational Environmental Satellite-M (GOES-M) satellite is in the spotlight at Astrotech, in Titusville, for the media to see the last in the current series of advanced geostationary w... More

The newest Geostationary Operational Environmental Satellite-M (GOES-M) satellite is ready at Astrotech, in Titusville for the media to see the last in the current series of advanced geostationary weather satellites in service. GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager that can be used in forecasting space weather, the effects of solar storms that create electromagnetic disturbances on earth that affect other satellites, communications and power grids. GOES is scheduled to launch from Cape Canaveral Air Force Station on an Atlas II rocket in July KSC-01pp1019

The newest Geostationary Operational Environmental Satellite-M (GOES-M...

The newest Geostationary Operational Environmental Satellite-M (GOES-M) satellite is ready at Astrotech, in Titusville for the media to see the last in the current series of advanced geostationary weather satel... More

Previous

of 25

Next