air force c

171 media by topicpage 1 of 2
KENNEDY SPACE CENTER, Fla. -- Workers off-load NASA's Genesis spacecraft which arrived at the Shuttle Landing Facility at 3:30 a.m. aboard an Air Force C-17 aircraft.; Lockheed Martin Astronautics built the Genesis spacecraft for NASA in Denver, Colo.; The spacecraft will undergo final launch preparations in the Payload Hazardous Servicing Facility in KSC's industrial area. Genesis will capture samples of the ions and elements in the solar wind and return them to Earth for scientists to use to determine the exact composition of the Sun and the solar system's origin. Launch aboard a Boeing Delta II rocket is scheduled for July 30 at 12:36 p.m. EDT.; NASA's Genesis project in managed by the Jet Propulsion Laboratory in Pasadena, Calif KSC-01pp1049

KENNEDY SPACE CENTER, Fla. -- Workers off-load NASA's Genesis spacecra...

KENNEDY SPACE CENTER, Fla. -- Workers off-load NASA's Genesis spacecraft which arrived at the Shuttle Landing Facility at 3:30 a.m. aboard an Air Force C-17 aircraft.; Lockheed Martin Astronautics built the Gen... More

CAPE CANAVERAL, Fla. -- Workers unload a container holding the cruise stage, one of the first three elements for NASA's Mars Science Laboratory (MSL) that arrived at NASA Kennedy Space Center's Shuttle Landing Facility aboard an Air Force C-17 cargo plane.       The cruise stage, back shell and heat shield, the first flight elements to arrive for the MSL mission, were taken to the Payload Hazardous Servicing Facility (PHSF) located in the KSC Industrial Area to begin processing. The Curiosity rover will arrive next month.    A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life.  The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Troy Cryder KSC-2011-3510

CAPE CANAVERAL, Fla. -- Workers unload a container holding the cruise ...

CAPE CANAVERAL, Fla. -- Workers unload a container holding the cruise stage, one of the first three elements for NASA's Mars Science Laboratory (MSL) that arrived at NASA Kennedy Space Center's Shuttle Landing ... More

The Mars Odyssey spacecraft is removed from the Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. Mars Odyssey will be moved on a transport trailer from KSC’s Shuttle Landing Facility to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. In the SAEF it will undergo final assembly and checkout. This includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. It will be fueled and then mated to an upper stage booster, the final activities before going to the launch pad. Launch is planned for April 7, 2001 the first day of a 21-day planetary window. Mars Odyssey will be inserted into an interplanetary trajectory by a Boeing Delta II launch vehicle from Pad A at Complex 17 at the Cape Canaveral Air Force Station, Fla. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet's surface and measuring its environment KSC01pp0033

The Mars Odyssey spacecraft is removed from the Air Force C-17 cargo a...

The Mars Odyssey spacecraft is removed from the Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. Mars Odyssey will be move... More

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation Belt Storm Probe B, enclosed in a protective shipping container, from a flatbed truck at the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida where Applied Physics Laboratory technicians will begin spacecraft testing and prelaunch preparations.  The twin RBSP spacecraft arrived at Kennedy’s Shuttle Landing Facility in the cargo bay of a U.S. Air Force C-17 aircraft earlier in the day.          The RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. The RBSP instruments will provide the measurements needed to characterize and quantify the plasma processes that produce very energetic ions and relativistic electrons. The mission is part of NASA’s broader Living With a Star Program that was conceived to explore fundamental processes that operate throughout the solar system, and in particular those that generate hazardous space weather effects in the vicinity of Earth and phenomena that could impact solar system exploration. RBSP is scheduled to begin its mission of exploration of Earth's Van Allen Radiation Belts and the extremes of space weather after launch. Launch aboard a United Launch Alliance Atlas V rocket is scheduled for August 23.  For more information, visit http://www.nasa.gov/rbsp.  Photo credit: NASA/Kim Shiflett KSC-2012-2638

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation B...

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation Belt Storm Probe B, enclosed in a protective shipping container, from a flatbed truck at the Astrotech payload processing facility near NASA’... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, NASA's GOES-P meteorological satellite is moved to the edge of the cargo bay of a U.S. Air Force C-17 aircraft for offloading.    GOES-P, the latest Geostationary Operational Environmental Satellite, was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA.  GOES-P is designed to watch for storm development and observed current weather conditions on Earth.  Launch of GOES-P is targeted for no earlier than Feb. 25, 2010, from Launch Complex 37 aboard a United Launch Alliance Delta IV rocket.  For information on GOES-P, visit http://goespoes.gsfc.nasa.gov/goes/spacecraft/n_p_spacecraft.html. Photo credit: NASA/Amanda Diller KSC-2009-6864

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, NASA's GOES-P meteorological satellite is moved to the edge of the cargo bay of a U.S. Air Force C-17 aircraft f... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, arrives on the Shuttle Landing Facility runway aboard an Air Force C-5M aircraft from Europe. The state-of-the-art particle physics detector is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter.      AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011.  Photo credit: NASA/Jack Pfaller KSC-2010-4481

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, arrives on the Shuttle Landing Facility runway aboard an Air Force C-5M aircraft from Europe. The stat... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, three of NASA's T-38 training jets sit on the parking apron of the Shuttle Landing Facility. The STS-134 crew members flew the jets to Kennedy to watch the Alpha Magnetic Spectrometer (AMS) arrive aboard an Air Force C-5M aircraft from Europe. The state-of-the-art particle physics detector will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter.      AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011.  Photo credit: NASA/Frankie Martin KSC-2010-4538

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, thr...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, three of NASA's T-38 training jets sit on the parking apron of the Shuttle Landing Facility. The STS-134 crew members flew the jets to Kennedy ... More

The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet recovery ship, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home for 21 days. In this photo taken at Pearl Harbor, Hawaii, the quarantined housing facility is being lowered from the U.S.S. Hornet, onto a trailer for transport to Hickam Field. From there, it was loaded aboard an Air Force C-141 jet and flown back to Ellington Air Force Base Texas, and then on to the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. n/a

The Apollo 11 mission, the first manned lunar mission, launched from t...

The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely r... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft.  The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1061

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. ... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft.  The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1062

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. ... More

KENNEDY SPACE CENTER, FLA. --  On Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is maneuvered away from the U.S. Air Force C-17 Globemaster III that delivered it. The crate will be transported to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1058

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landi...

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, the crated Phoenix spacecraft is maneuvered away from the U.S. Air Force C-17 Globemaster III that delivered it. The crate will... More

KENNEDY SPACE CENTER, FLA. --  On Kennedy Space Center's Shuttle Landing Facility, the cargo hold of this U.S. Air Force C-17 Globemaster III opens to reveal the crated Phoenix spacecraft inside.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1056

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landi...

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, the cargo hold of this U.S. Air Force C-17 Globemaster III opens to reveal the crated Phoenix spacecraft inside. The Phoenix m... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, media dressed in clean-room garb document the arrival of the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1063

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, media dressed in clean-room garb document the arrival of the Phoenix spacecraft. The spacecraft arrived May 7 ... More

KENNEDY SPACE CENTER, FLA. --  This U.S. Air Force C-17 Globemaster III lands at the Kennedy Space Center's Shuttle Landing Facility carrying the Phoenix spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1055

KENNEDY SPACE CENTER, FLA. -- This U.S. Air Force C-17 Globemaster II...

KENNEDY SPACE CENTER, FLA. -- This U.S. Air Force C-17 Globemaster III lands at the Kennedy Space Center's Shuttle Landing Facility carrying the Phoenix spacecraft. The Phoenix mission is the first project in ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-134 Mission Specialists Michael Fincke, Andrew Fuestel, Pilot Gregory C. Johnson, Commander Mark Kelly and Mission Specialist Greg Chamitoff (in blue flight suits) join the Air Force C-5M flight crew that delivered the Alpha Magnetic Spectrometer, or AMS, to the Shuttle Landing Facility, in a group photo opportunity.        AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller KSC-2010-4484

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-134 Mission Specialists Michael Fincke, Andrew Fuestel, Pilot Gregory C. Johnson, Commander Mark Kelly and Mission Specialist Greg Chamitof... More

KENNEDY SPACE CENTER, FLA. --  On Kennedy Space Center's Shuttle Landing Facility, workers oversee the offloading of the crated Phoenix spacecraft inside the cargo hold of a U.S. Air Force C-17 Globemaster III.  The crate will be transported to the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/Charisse Nahser KSC-07pd1057

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landi...

KENNEDY SPACE CENTER, FLA. -- On Kennedy Space Center's Shuttle Landing Facility, workers oversee the offloading of the crated Phoenix spacecraft inside the cargo hold of a U.S. Air Force C-17 Globemaster III.... More

The Atlas 1 rocket which will launch the GOES-K advanced weather satellite is unloaded from an Air Force C-5 air cargo plane after arrival at the Skid Strip, Cape Canaveral Air Station (CCAS). The Lockheed Martin-built rocket and its Centaur upper stage will form the AC-79 vehicle, the final vehicle in the Atlas 1 series which began launches for NASA in 1962. Future launches of geostationary operational environmental satellites (GOES) in the current series will be on Atlas II vehicles. GOES-K will be the third spacecraft to be launched in the new advanced series of geostationary weather satellites built for NASA and the National Oceanic and Atmospheric Administration (NOAA). The spacecraft will be designated GOES-10 in orbit. The launch of AC-79/GOES-K is targeted for April 24 from Launch Pad 36B, CCAS KSC-97pc356

The Atlas 1 rocket which will launch the GOES-K advanced weather satel...

The Atlas 1 rocket which will launch the GOES-K advanced weather satellite is unloaded from an Air Force C-5 air cargo plane after arrival at the Skid Strip, Cape Canaveral Air Station (CCAS). The Lockheed Mart... More

Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which /1997/66-97.htm">just landed</a> at KSC’s Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc678

Workers offload the shipping container with the Cassini orbiter from w...

Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which kscpao/release/1997/66-97.htm">just landed</a> at ... More

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The /1997/66-97.htm">orbiter arrived</a> at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc682

Workers prepare to move the shipping container with the Cassini orbite...

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The kscpao/release/1997/66-97.ht... More

Workers prepare to tow away the large container with the Cassini orbiter from KSC’s Shuttle Landing Facility. The orbiter /1997/66-97.htm">just arrived</a> on the U.S. Air Force C-17 air cargo plane, shown here, from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc679

Workers prepare to tow away the large container with the Cassini orbit...

Workers prepare to tow away the large container with the Cassini orbiter from KSC’s Shuttle Landing Facility. The orbiter kscpao/release/1997/66-97.htm">just arrived</a> on the U.S. Air Force C-17 air cargo pla... More

Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17 air cargo plane after its /1997/66-97.htm">arrival</a> at KSC’s Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc677

Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17...

Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17 air cargo plane after its kscpao/release/1997/66-97.htm">arrival</a> at KSC’s Shuttle Landing Facility from Edwards Air Force Base, Califor... More

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The /1997/66-97.htm">orbiter arrived</a> at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc681

Workers prepare to move the shipping container with the Cassini orbite...

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The kscpao/release/1997/66-97.ht... More

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The /1997/66-97.htm">orbiter arrived</a> at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc680

Workers prepare to move the shipping container with the Cassini orbite...

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The kscpao/release/1997/66-97.ht... More

Node 1, the first element of the International  Space Station to be manufactured in the United States and the first to be launched on the  Space Shuttle, is unloaded in its container from an Air Force C-5 jet cargo transport at  KSC’s Shuttle Landing Facility runway on June 23 after its arrival from NASA’s  Marshall Space Flight Center (MSFC). The module was then transported to the Space  Station Processing Facility. The Node 1 module is currently scheduled to lift off aboard  the Space Shuttle Endeavour in July 1998 along with Pressurized Mating Adapters  (PMAs) 1 and 2. The 18-foot in diameter, 22-foot-long aluminum module was  manufactured by the Boeing Co. at MSFC. Once in space, the Node 1 will function as a  connecting passageway to the living and working areas of the International Space Station.  It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S.  habitation module, an airlock and other Space Station elements KSC-97PC923

Node 1, the first element of the International Space Station to be ma...

Node 1, the first element of the International Space Station to be manufactured in the United States and the first to be launched on the Space Shuttle, is unloaded in its container from an Air Force C-5 jet c... More

Node 1, the first element of the International  Space Station to be manufactured in the United States and the first to be launched on the  Space Shuttle, is unloaded in its container from an Air Force C-5 jet cargo transport at  KSC’s Shuttle Landing Facility runway on June 23 after its arrival from NASA’s  Marshall Space Flight Center (MSFC). The module was then transported to the Space  Station Processing Facility. The Node 1 module is currently scheduled to lift off aboard  the Space Shuttle Endeavour in July 1998 along with Pressurized Mating Adapters  (PMAs) 1 and 2. The 18-foot-in-diameter, 22-foot-long aluminum module was  manufactured by the Boeing Co. at MSFC. Once in space, the Node 1 will function as a  connecting passageway to the living and working areas of the International Space Station.  It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S.  habitation module, an airlock and other Space Station elements KSC-97PC922

Node 1, the first element of the International Space Station to be ma...

Node 1, the first element of the International Space Station to be manufactured in the United States and the first to be launched on the Space Shuttle, is unloaded in its container from an Air Force C-5 jet c... More

The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When the spacecraft arrives at the red planet, it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket KSC-98pc1046

The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing F...

The Mars Climate Orbiter spacecraft arrives at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, ... More

The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket KSC-98pc1048

The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assem...

The Mars Climate Orbiter spacecraft is moved into the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) in KSC's industrial area. It arrived at the Shuttle Landing Facility aboard an Air Force C-17 carg... More

The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo plane early this morning following its flight from the Lockheed Martin Astronautics plant in Denver, Colo. When it arrives at the red planet, the Mars Climate Orbiter will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Delta II 7425 rocket KSC-98pc1047

The Mars Climate Orbiter spacecraft is moved onto a flatbed for transp...

The Mars Climate Orbiter spacecraft is moved onto a flatbed for transport to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). It arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 ... More

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is loaded onto a truck after its flight aboard an Air Force C-17 cargo plane that carried it from the Lockheed Martin Astronautics plant in Denver, CO. The lander is being transported to the Spacecraft Assembly and Encapsulation Facility-2(SAEF-2) in the KSC Industrial Area for testing, including a functional test of the science instruments and the basic spacecraft subsystems. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. The Mars Polar Lander spacecraft is planned for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999 KSC-98pc1196

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mar...

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is loaded onto a truck after its flight aboard an Air Force C-17 cargo plane that carried it from the Lockheed Martin Astrona... More

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is rolled from the Air Force C-17 cargo plane that carried it from the Lockheed Martin Astronautics plant in Denver, CO. The Mars Polar Lander is targeted for launch from Cape Canaveral Air Station aboard a Delta II rocket on Jan. 3, 1999. The solar-powered spacecraft is designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere KSC-98pc1197

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mar...

KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the Mars Polar Lander is rolled from the Air Force C-17 cargo plane that carried it from the Lockheed Martin Astronautics plant in Denver, CO. The ... More

KENNEDY SPACE CENTER, FLA. -- The Chandra X-ray Observatory is unloaded from an Air Force C-5 Galaxy transporter two days after landing at the Shuttle Landing Facility on Feb. 4. The observatory sits cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, which closely resembles the size and shape of the Shuttle cargo bay. In the background (left) is the mate-demate device, used when an orbiter is returned to KSC on the back of a Shuttle carrier aircraft. Over the next few months, Chandra will undergo final tests and be mated to a Boeing-provided Inertial Upper Stage for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe KSC-99pc0164

KENNEDY SPACE CENTER, FLA. -- The Chandra X-ray Observatory is unloade...

KENNEDY SPACE CENTER, FLA. -- The Chandra X-ray Observatory is unloaded from an Air Force C-5 Galaxy transporter two days after landing at the Shuttle Landing Facility on Feb. 4. The observatory sits cradled in... More

Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory reaches the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe KSC-99pc0165

Cradled in the cargo hold of a tractor-trailer rig called the Space Ca...

Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory reaches the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Land... More

Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory waits to be moved inside the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe KSC-99pc0166

Cradled in the cargo hold of a tractor-trailer rig called the Space Ca...

Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory waits to be moved inside the Vertical Processing Facility (VPF). Chandra arrived at... More

At the Vertical Processing Facility (VPF), workers (left) drive, by remote control, the rear bogie away from the VPF. The bogie is part of the tractor-trailer rig called the Space Cargo Transportation System that helped move the Chandra X-ray Observatory (right) from the Shuttle Landing Facility into the VPF. Chandra arrived at KSC on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe KSC-99pc0167

At the Vertical Processing Facility (VPF), workers (left) drive, by re...

At the Vertical Processing Facility (VPF), workers (left) drive, by remote control, the rear bogie away from the VPF. The bogie is part of the tractor-trailer rig called the Space Cargo Transportation System th... More

KENNEDY SPACE CENTER, FLA. -- The Chandra X-ray Observatory is unloaded from an Air Force C-5 Galaxy transporter two days after landing at the Shuttle Landing Facility on Feb. 4. The observatory sits cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, which closely resembles the size and shape of the Shuttle cargo bay. In the background (right) is the mate-demate device, used when an orbiter is returned to KSC on the back of a Shuttle carrier aircraft. Over the next few months, Chandra will undergo final tests and be mated to a Boeing-provided Inertial Upper Stage for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe KSC-99pc0163

KENNEDY SPACE CENTER, FLA. -- The Chandra X-ray Observatory is unloade...

KENNEDY SPACE CENTER, FLA. -- The Chandra X-ray Observatory is unloaded from an Air Force C-5 Galaxy transporter two days after landing at the Shuttle Landing Facility on Feb. 4. The observatory sits cradled in... More

At Cape Canaveral Air Station, workers secure a Centaur upper stage on a transporter after offloading it from a U.S. Air Force C-5c (right). After being mated with the Atlas IIA lower stage, the rocket is scheduled to launch the NASA GOES-L satellite from Launch Pad 36A on May 15. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0387

At Cape Canaveral Air Station, workers secure a Centaur upper stage on...

At Cape Canaveral Air Station, workers secure a Centaur upper stage on a transporter after offloading it from a U.S. Air Force C-5c (right). After being mated with the Atlas IIA lower stage, the rocket is sched... More

At Cape Canaveral Air Station, workers secure an Atlas IIA rocket on a transporter after offloading it from a U.S. Air Force C-5c (left). The rocket is scheduled to launch the NASA GOES-L satellite from Launch Pad 36A on May 15. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0384

At Cape Canaveral Air Station, workers secure an Atlas IIA rocket on a...

At Cape Canaveral Air Station, workers secure an Atlas IIA rocket on a transporter after offloading it from a U.S. Air Force C-5c (left). The rocket is scheduled to launch the NASA GOES-L satellite from Launch ... More

At Cape Canaveral Air Station, workers begin offloading a Centaur upper stage from a U.S. Air Force C-5c. After being mated with the Atlas IIA lower stage, the rocket is scheduled to launch the NASA GOES-L satellite from Launch Pad 36A on May 15. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0386

At Cape Canaveral Air Station, workers begin offloading a Centaur uppe...

At Cape Canaveral Air Station, workers begin offloading a Centaur upper stage from a U.S. Air Force C-5c. After being mated with the Atlas IIA lower stage, the rocket is scheduled to launch the NASA GOES-L sate... More

An Atlas IIA rocket is transported from Cape Canaveral Air Station after its arrival aboard a U.S. Air Force C-5c. The rocket is scheduled to launch the NASA GOES-L satellite from Launch Pad 36A on May 15. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0385

An Atlas IIA rocket is transported from Cape Canaveral Air Station aft...

An Atlas IIA rocket is transported from Cape Canaveral Air Station after its arrival aboard a U.S. Air Force C-5c. The rocket is scheduled to launch the NASA GOES-L satellite from Launch Pad 36A on May 15. Once... More

At Cape Canaveral Air Station (CCAS), workers help guide the crane lifting a Centaur upper stage onto a transporter. The Centaur arrived at CCAS aboard a U.S. Air Force C-5c (far left). After being mated with the Atlas IIA lower stage, the rocket is scheduled to launch the NASA GOES-L satellite from Launch Pad 36A on May 15. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0388

At Cape Canaveral Air Station (CCAS), workers help guide the crane lif...

At Cape Canaveral Air Station (CCAS), workers help guide the crane lifting a Centaur upper stage onto a transporter. The Centaur arrived at CCAS aboard a U.S. Air Force C-5c (far left). After being mated with t... More

At Cape Canaveral Air Station, workers begin offloading an Atlas IIA rocket from a U.S. Air Force C-5c. The rocket is scheduled to launch the NASA GOES-L satellite from Launch Pad 36B on May 15. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0383

At Cape Canaveral Air Station, workers begin offloading an Atlas IIA r...

At Cape Canaveral Air Station, workers begin offloading an Atlas IIA rocket from a U.S. Air Force C-5c. The rocket is scheduled to launch the NASA GOES-L satellite from Launch Pad 36B on May 15. Once in orbit, ... More

A forklift carries the crated Mars Odyssey spacecraft from the Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. The crate will placed on a transport trailer to take it from KSC’s Shuttle Landing Facility to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. In the SAEF it will undergo final assembly and checkout. This includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. It will be fueled and then mated to an upper stage booster, the final activities before going to the launch pad. Launch is planned for April 7, 2001 the first day of a 21-day planetary window. Mars Odyssey will be inserted into an interplanetary trajectory by a Boeing Delta II launch vehicle from Pad A at Complex 17 at the Cape Canaveral Air Force Station, Fla. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet's surface and measuring its environment KSC01pp0034

A forklift carries the crated Mars Odyssey spacecraft from the Air For...

A forklift carries the crated Mars Odyssey spacecraft from the Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. The crate ... More

Workers push the crated 2001 Mars Odyssey spacecraft toward the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. The spacecraft arrived at KSC’s Shuttle Landing Facility aboard an Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. In the SAEF, Odyssey will undergo final assembly and checkout. This includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. It will be fueled and then mated to an upper stage booster, the final activities before going to the launch pad. Launch is planned for April 7, 2001 the first day of a 21-day planetary window. Mars Odyssey will be inserted into an interplanetary trajectory by a Boeing Delta II launch vehicle from Pad A at Complex 17 at the Cape Canaveral Air Force Station, Fla. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet's surface and measuring its environment KSC01pp0038

Workers push the crated 2001 Mars Odyssey spacecraft toward the Spacec...

Workers push the crated 2001 Mars Odyssey spacecraft toward the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. The spacecraft arrived at KSC’s Shuttle Landing Faci... More

The 2001 Mars Odyssey spacecraft arrives at the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. The spacecraft arrived at KSC's Shuttle Landing Facility aboard an Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. In the SAEF, Odyssey will undergo final assembly and checkout. This includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. It will be fueled and then mated to an upper stage booster, the final activities before going to the launch pad. Launch is planned for April 7, 2001 the first day of a 21-day planetary window. Mars Odyssey will be inserted into an interplanetary trajectory by a Boeing Delta II launch vehicle from Pad A at Complex 17 at the Cape Canaveral Air Force Station, Fla. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet's surface and measuring its environment KSC01pp0037

The 2001 Mars Odyssey spacecraft arrives at the Spacecraft Assembly an...

The 2001 Mars Odyssey spacecraft arrives at the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. The spacecraft arrived at KSC's Shuttle Landing Facility aboard an A... More

The 2001 Mars Odyssey spacecraft sits on the bed of the trailer that will take it from KSC’s Shuttle Landing Facility to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. The spacecraft arrived at the SLF aboard an Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. In the SAEF Odyssey will undergo final assembly and checkout. This includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. It will be fueled and then mated to an upper stage booster, the final activities before going to the launch pad. Launch is planned for April 7, 2001 the first day of a 21-day planetary window. Mars Odyssey will be inserted into an interplanetary trajectory by a Boeing Delta II launch vehicle from Pad A at Complex 17 at the Cape Canaveral Air Force Station, Fla. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet's surface and measuring its environment KSC01pp0035

The 2001 Mars Odyssey spacecraft sits on the bed of the trailer that w...

The 2001 Mars Odyssey spacecraft sits on the bed of the trailer that will take it from KSC’s Shuttle Landing Facility to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industri... More

The Mars Odyssey spacecraft is maneuvered for removal from the Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. Mars Odyssey will be moved on a transport trailer from KSC's Shuttle Landing Facility to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. In the SAEF it will undergo final assembly and checkout. This includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. It will be fueled and then mated to an upper stage booster, the final activities before going to the launch pad. Launch is planned for April 7, 2001 the first day of a 21-day planetary window. Mars Odyssey will be inserted into an interplanetary trajectory by a Boeing Delta II launch vehicle from Pad A at Complex 17 at the Cape Canaveral Air Force Station, Fla. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet's surface and measuring its environment KSC01pp0032

The Mars Odyssey spacecraft is maneuvered for removal from the Air For...

The Mars Odyssey spacecraft is maneuvered for removal from the Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. Mars Odyss... More

The crated 2001 Mars Odyssey spacecraft rests safely inside the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. The spacecraft arrived at KSC’s Shuttle Landing Facility aboard an Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. In the SAEF, Odyssey will undergo final assembly and checkout. This includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. It will be fueled and then mated to an upper stage booster, the final activities before going to the launch pad. Launch is planned for April 7, 2001 the first day of a 21-day planetary window. Mars Odyssey will be inserted into an interplanetary trajectory by a Boeing Delta II launch vehicle from Pad A at Complex 17 at the Cape Canaveral Air Force Station, Fla. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet's surface and measuring its environment KSC01pp0039

The crated 2001 Mars Odyssey spacecraft rests safely inside the Spacec...

The crated 2001 Mars Odyssey spacecraft rests safely inside the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. The spacecraft arrived at KSC’s Shuttle Landing Faci... More

The 2001 Mars Odyssey spacecraft leaves the KSC Shuttle Landing Facility on the bed of a transport trailer. The spacecraft is being moved to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located in the KSC Industrial Area. The spacecraft arrived at the SLF aboard an Air Force C-17 cargo airplane that brought it from Denver, Colo.., location of the Lockheed Martin plant where the spacecraft was built. In the SAEF, Odyssey will undergo final assembly and checkout. This includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. It will be fueled and then mated to an upper stage booster, the final activities before going to the launch pad. Launch is planned for April 7, 2001 the first day of a 21-day planetary window. Mars Odyssey will be inserted into an interplanetary trajectory by a Boeing Delta II launch vehicle from Pad A at Complex 17 at the Cape Canaveral Air Force Station, Fla. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet's surface and measuring its environment KSC01pp0036

The 2001 Mars Odyssey spacecraft leaves the KSC Shuttle Landing Facili...

The 2001 Mars Odyssey spacecraft leaves the KSC Shuttle Landing Facility on the bed of a transport trailer. The spacecraft is being moved to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) located... More

KENNEDY SPACE CENTER, Fla. -- At the Shuttle Landing Facility, workers prepare NASA's Genesis spacecraft for transport to the Payload Hazardous Servicing Facility in KSC's industrial area where it will undergo final preparations;for launch.; The spacecraft arrived aboard an Air Force C-17 aircraft from Denver, Colo., where it was built for NASA by Lockheed Martin Astronautics.; Genesis is designed to capture samples of the ions and elements in the solar wind and return them to Earth for scientists to use to determine the exact composition of the Sun and the solar system's origin. Launch aboard a Boeing Delta II rocket is scheduled for July 30 at 12:36 p.m. EDT.; NASA's Genesis project in managed by the Jet Propulsion Laboratory in Pasadena, Calif KSC-01pp1050

KENNEDY SPACE CENTER, Fla. -- At the Shuttle Landing Facility, workers...

KENNEDY SPACE CENTER, Fla. -- At the Shuttle Landing Facility, workers prepare NASA's Genesis spacecraft for transport to the Payload Hazardous Servicing Facility in KSC's industrial area where it will undergo ... More

KENNEDY SPACE CENTER, FLA. --  At KSC's Shuttle Landing Facility, the Air Force C-17 air cargo plane offloads the Tracking and Data Relay Satellite-I (TDRS-I).  The second in a new series of telemetry satellites, TDRS-I replenishes the existing on-orbit fleet of six spacecraft.  The TDRS System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle.  It also provides communications with the International Space Station and scientific spacecraft in low-Earth orbit such as the Hubble Space Telescope.  This new advanced series of satellites will extend the availability of TDRS communications services until about 2017. TDRS-I will undergo processing in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) to prepare it for launch March 8 aboard a Lockheed Martin Atlas IIA rocket from Pad 36-A, Cape Canaveral Air Force Station KSC-02pd0111

KENNEDY SPACE CENTER, FLA. -- At KSC's Shuttle Landing Facility, the ...

KENNEDY SPACE CENTER, FLA. -- At KSC's Shuttle Landing Facility, the Air Force C-17 air cargo plane offloads the Tracking and Data Relay Satellite-I (TDRS-I). The second in a new series of telemetry satellite... More

KENNEDY SPACE CENTER, FLA. --  The Tracking and Data Relay Satellite-J (TDRS-J) is being offloaded at the KSC Shuttle Landing Facility from an Air Force C-17 air cargo plane.   It will be transferred to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). TDRS-J weighs 3,338 pounds, but at launch will weigh 7,031 pounds when fully fueled with its propellants consisting of monomethylhydrazine fuel and nitrogen tetroxide oxidizer. The solar arrays, when deployed, will supply the spacecraft with up to 2,200 watts of power.  TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017. KSC-02pd1572

KENNEDY SPACE CENTER, FLA. -- The Tracking and Data Relay Satellite-J...

KENNEDY SPACE CENTER, FLA. -- The Tracking and Data Relay Satellite-J (TDRS-J) is being offloaded at the KSC Shuttle Landing Facility from an Air Force C-17 air cargo plane. It will be transferred to the Spa... More

KENNEDY SPACE CENTER, FLA. --  The Tracking and Data Relay Satellite-J (TDRS-J) is offloaded  at the KSC Shuttle Landing Facility from an Air Force C-17 air cargo plane.   It will be transferred to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). TDRS-J weighs 3,338 pounds, but at launch will weigh 7,031 pounds when fully fueled with its propellants consisting of monomethylhydrazine fuel and nitrogen tetroxide oxidizer. The solar arrays, when deployed, will supply the spacecraft with up to 2,200 watts of power.  TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017. KSC-02pd1571

KENNEDY SPACE CENTER, FLA. -- The Tracking and Data Relay Satellite-J...

KENNEDY SPACE CENTER, FLA. -- The Tracking and Data Relay Satellite-J (TDRS-J) is offloaded at the KSC Shuttle Landing Facility from an Air Force C-17 air cargo plane. It will be transferred to the Spacecra... More

KENNEDY SPACE CENTER, FLA. --  The Tracking and Data Relay Satellite-J (TDRS-J) has been offloaded at the KSC Shuttle Landing Facility from an Air Force C-17 air cargo plane.   It will be transferred to the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). TDRS-J weighs 3,338 pounds, but at launch will weigh 7,031 pounds when fully fueled with its propellants consisting of monomethylhydrazine fuel and nitrogen tetroxide oxidizer. The solar arrays, when deployed, will supply the spacecraft with up to 2,200 watts of power.  TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017. KSC-02pd1573

KENNEDY SPACE CENTER, FLA. -- The Tracking and Data Relay Satellite-J...

KENNEDY SPACE CENTER, FLA. -- The Tracking and Data Relay Satellite-J (TDRS-J) has been offloaded at the KSC Shuttle Landing Facility from an Air Force C-17 air cargo plane. It will be transferred to the Spa... More

KENNEDY SPACE CENTER, FLA. -  At the KSC Shuttle Landing Facility, an overhead crane lifts the container with the TDRS-J spacecraft onto a transport vehicle.  In the background is the Air Force C-17 air cargo plane that delivered it. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017. KSC-02pd1576

KENNEDY SPACE CENTER, FLA. - At the KSC Shuttle Landing Facility, an ...

KENNEDY SPACE CENTER, FLA. - At the KSC Shuttle Landing Facility, an overhead crane lifts the container with the TDRS-J spacecraft onto a transport vehicle. In the background is the Air Force C-17 air cargo p... More

DC-8 NAMMA MISSION TO CAPE VERDE, AFRICA: U.S. Air Force C-17, Spirit of Ronald Reagan, lands at Sal Island's Amilcar Cabral International Airport carrying equipment and supplies for the mission, NASA DC-8 in foreground. ARC-2006-ACD06-0135-020

DC-8 NAMMA MISSION TO CAPE VERDE, AFRICA: U.S. Air Force C-17, Spirit ...

DC-8 NAMMA MISSION TO CAPE VERDE, AFRICA: U.S. Air Force C-17, Spirit of Ronald Reagan, lands at Sal Island's Amilcar Cabral International Airport carrying equipment and supplies for the mission, NASA DC-8 in foreground.

DC-8 NAMMA MISSION TO CAPE VERDE, AFRICA: U.S. Air Force C-17, Spirit of Ronald Reagan, taxis after landing at Sal Island's Amilcar Cabral International Airport carrying equipment and supplies for the mission ARC-2006-ACD06-0135-021

DC-8 NAMMA MISSION TO CAPE VERDE, AFRICA: U.S. Air Force C-17, Spirit ...

DC-8 NAMMA MISSION TO CAPE VERDE, AFRICA: U.S. Air Force C-17, Spirit of Ronald Reagan, taxis after landing at Sal Island's Amilcar Cabral International Airport carrying equipment and supplies for the mission

DC-8 NAMMA MISSION TO CAPE VERDE, AFRICA: U.S. Air Force C-17, Spirit of Ronald Reagan, begins unloading equipment and supplies for the mission. DC-8 Aircraft Chief Steve Davis looks on.  (Eric James videotapes/photographs) ARC-2006-ACD06-0135-024

DC-8 NAMMA MISSION TO CAPE VERDE, AFRICA: U.S. Air Force C-17, Spirit ...

DC-8 NAMMA MISSION TO CAPE VERDE, AFRICA: U.S. Air Force C-17, Spirit of Ronald Reagan, begins unloading equipment and supplies for the mission. DC-8 Aircraft Chief Steve Davis looks on. (Eric James videotapes... More

CAPE CANAVERAL, Fla. –  At NASA Kennedy Space Center's Shuttle Landing Facility, workers move STSS Demonstrator SV-2 spacecraft equipment out of the cargo hold of the U.S. Air Force C-17 aircraft.  The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer.  Photo credit: NASA/Jack Pfaller  (Approved for Public Release 09-MDA-4616 [27 May 09]) KSC-2009-3659

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing...

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, workers move STSS Demonstrator SV-2 spacecraft equipment out of the cargo hold of the U.S. Air Force C-17 aircraft. The spacecra... More

CAPE CANAVERAL, Fla. –  At NASA Kennedy Space Center's Shuttle Landing Facility,  more equipment for the STSS Demonstrator SV-2 spacecraft is offloaded from the U.S. Air Force C-17 aircraft. The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla.The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer.  Photo credit: NASA/Jack Pfaller  (Approved for Public Release 09-MDA-4616 [27 May 09]) KSC-2009-3660

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing...

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, more equipment for the STSS Demonstrator SV-2 spacecraft is offloaded from the U.S. Air Force C-17 aircraft. The spacecraft will... More

CAPE CANAVERAL, Fla. –  The U.S. Air Force C-17 aircraft arrives at NASA Kennedy Space Center's Shuttle Landing Facility with its cargo of the STSS Demonstrator SV-2 spacecraft.  The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer.  Photo credit: NASA/Jack Pfaller  (Approved for Public Release 09-MDA-4616 [27 May 09]) KSC-2009-3658

CAPE CANAVERAL, Fla. – The U.S. Air Force C-17 aircraft arrives at NA...

CAPE CANAVERAL, Fla. – The U.S. Air Force C-17 aircraft arrives at NASA Kennedy Space Center's Shuttle Landing Facility with its cargo of the STSS Demonstrator SV-2 spacecraft. The spacecraft will be transfer... More

CAPE CANAVERAL, Fla. –  At NASA Kennedy Space Center's Shuttle Landing Facility,  the shipping container with the STSS Demonstrator SV-2spacecraft waits to be offloaded from the U.S. Air Force C-17 aircraft. The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer.  Photo credit: NASA/Jack Pfaller  (Approved for Public Release 09-MDA-4616 [27 May 09]) KSC-2009-3661

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing...

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the shipping container with the STSS Demonstrator SV-2spacecraft waits to be offloaded from the U.S. Air Force C-17 aircraft. Th... More

CAPE CANAVERAL, Fla. –  At NASA Kennedy Space Center's Shuttle Landing Facility,  the shipping container with the STSS Demonstrator SV-2spacecraft moves out of the U.S. Air Force C-17 aircraft. The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer.  Photo credit: NASA/Jack Pfaller  (Approved for Public Release 09-MDA-4616 [27 May 09]) KSC-2009-3662

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing...

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the shipping container with the STSS Demonstrator SV-2spacecraft moves out of the U.S. Air Force C-17 aircraft. The spacecraft w... More

CAPE CANAVERAL, Fla. –  At NASA Kennedy Space Center's Shuttle Landing Facility,  the shipping container with the STSS Demonstrator SV-2spacecraft has been moved out of the U.S. Air Force C-17 aircraft. The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer.  Photo credit: NASA/Jack Pfaller  (Approved for Public Release 09-MDA-4616 [27 May 09]) KSC-2009-3663

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing...

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the shipping container with the STSS Demonstrator SV-2spacecraft has been moved out of the U.S. Air Force C-17 aircraft. The spa... More

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the SV-1 cargo of the STSS Demonstrator spacecraft moves out of the U.S. Air Force C-17. The cargo will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer.  Photo credit: NASA/Kim Shiflett  (Approved for Public Release 09-MDA-4804 [4 Aug 09] ) KSC-2009-4612

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing ...

CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the SV-1 cargo of the STSS Demonstrator spacecraft moves out of the U.S. Air Force C-17. The cargo will be transferred to the Astr... More

CAPE CANAVERAL, Fla. – The U.S. Air Force C-17 aircraft arrives at NASA Kennedy Space Center's Shuttle Landing Facility with its SV-1 cargo of the STSS Demonstrator spacecraft. The cargo will be transferred to the Astrotech payload processing facility in Titusville, Fla.  The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer.  Photo credit: NASA/Kim Shiflett  (Approved for Public Release 09-MDA-4804 [4 Aug 09] ) KSC-2009-4611

CAPE CANAVERAL, Fla. – The U.S. Air Force C-17 aircraft arrives at NAS...

CAPE CANAVERAL, Fla. – The U.S. Air Force C-17 aircraft arrives at NASA Kennedy Space Center's Shuttle Landing Facility with its SV-1 cargo of the STSS Demonstrator spacecraft. The cargo will be transferred to ... More

CAPE CANAVERAL, Fla. – The U.S. Air Force C-5 prepares to land on NASA Kennedy Space Center's Shuttle Landing Facility.  The aircraft carries the Express Logistics Carrier 4, or ELC4, part of the payload for the STS-133 mission.  Space shuttle Endeavour will deliver the ELC4 and ELC3 with critical spare components to the International Space Station on the mission.  Endeavour's launch is targeted for late July in 2010.  Photo credit: NASA/Amanda Diller KSC-2009-4689

CAPE CANAVERAL, Fla. – The U.S. Air Force C-5 prepares to land on NASA...

CAPE CANAVERAL, Fla. – The U.S. Air Force C-5 prepares to land on NASA Kennedy Space Center's Shuttle Landing Facility. The aircraft carries the Express Logistics Carrier 4, or ELC4, part of the payload for th... More

CAPE CANAVERAL, Fla. – On NASA Kennedy Space Center's Shuttle Landing Facility, the U.S. Air Force C-5 prepares to offload its cargo, the Express Logistics Carrier 4, or ELC4. The ELC4 is part of the payload for the STS-133 mission. Space shuttle Endeavour will deliver the ELC4 and ELC3 with critical spare components to the International Space Station on the mission.  Endeavour's launch is targeted for late July in 2010.  Photo credit: NASA/Amanda Diller KSC-2009-4691

CAPE CANAVERAL, Fla. – On NASA Kennedy Space Center's Shuttle Landing ...

CAPE CANAVERAL, Fla. – On NASA Kennedy Space Center's Shuttle Landing Facility, the U.S. Air Force C-5 prepares to offload its cargo, the Express Logistics Carrier 4, or ELC4. The ELC4 is part of the payload fo... More

CAPE CANAVERAL, Fla. – On NASA Kennedy Space Center's Shuttle Landing Facility, the Express Logistics Carrier 4, or ELC4, is out of the U.S. Air Force C-5. It will be transported to the Space Station Processing Facility. The ELC4 is part of the payload for the STS-133 mission. Space shuttle Endeavour will deliver the ELC4 and ELC3 with critical spare components to the International Space Station on the mission.  Endeavour's launch is targeted for late July in 2010.  Photo credit: NASA/Amanda Diller KSC-2009-4696

CAPE CANAVERAL, Fla. – On NASA Kennedy Space Center's Shuttle Landing ...

CAPE CANAVERAL, Fla. – On NASA Kennedy Space Center's Shuttle Landing Facility, the Express Logistics Carrier 4, or ELC4, is out of the U.S. Air Force C-5. It will be transported to the Space Station Processing... More

CAPE CANAVERAL, Fla. – On NASA Kennedy Space Center's Shuttle Landing Facility, the Express Logistics Carrier 4, or ELC4, is moved out of the U.S. Air Force C-5. The ELC4 is part of the payload for the STS-133 mission. Space shuttle Endeavour will deliver the ELC4 and ELC3 with critical spare components to the International Space Station on the mission.  Endeavour's launch is targeted for late July in 2010.  Photo credit: NASA/Amanda Diller KSC-2009-4693

CAPE CANAVERAL, Fla. – On NASA Kennedy Space Center's Shuttle Landing ...

CAPE CANAVERAL, Fla. – On NASA Kennedy Space Center's Shuttle Landing Facility, the Express Logistics Carrier 4, or ELC4, is moved out of the U.S. Air Force C-5. The ELC4 is part of the payload for the STS-133 ... More

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to offload the ExPRESS Logistics Carrier 3, or ELC-3, from a U.S. Air Force C-5 aircraft.    ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields.  Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett KSC-2009-6663

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to offload the ExPRESS Logistics Carrier 3, or ELC-3, from a U.S. Air Force C-5 aircr... More

CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, U.S. Air Force C-5 aircraft lands at the Shuttle Landing Facility, delivering the ExPRESS Logistics Carrier 3, or ELC-3.    ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields.  Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett KSC-2009-6662

CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, U.S....

CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, U.S. Air Force C-5 aircraft lands at the Shuttle Landing Facility, delivering the ExPRESS Logistics Carrier 3, or ELC-3. ELC-3 and the Alpha ... More

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the ExPRESS Logistics Carrier 3, or ELC-3, is secured on the bed of the truck which will transport it to the Space Station Processing Facility.  At left is the U.S. Air Force C-5 aircraft on which it arrived.    ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields.  Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett KSC-2009-6666

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the ExPRESS Logistics Carrier 3, or ELC-3, is secured on the bed of the truck which will transport it to the Spa... More

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the ExPRESS Logistics Carrier 3, or ELC-3, is offloaded from a U.S. Air Force C-5 aircraft.    ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields.  Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett KSC-2009-6664

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the ExPRESS Logistics Carrier 3, or ELC-3, is offloaded from a U.S. Air Force C-5 aircraft. ELC-3 and the Alp... More

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the ExPRESS Logistics Carrier 3, or ELC-3, is removed from the cargo compartment of a U.S. Air Force C-5 aircraft.    ELC-3 and the Alpha Magnetic Spectrometer are the primary payloads for space shuttle Endeavour's STS-134 mission to the International Space Station. The STS-134 crew will also deliver spare parts including two S-band communications antennas, a high pressure gas tank, additional spare parts for Dextre and micrometeoroid debris shields.  Endeavour's launch is targeted for July 29, 2010. For information on the STS-134 mission objectives and crew, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Kim Shiflett KSC-2009-6665

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. - At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, the ExPRESS Logistics Carrier 3, or ELC-3, is removed from the cargo compartment of a U.S. Air Force C-5 aircraf... More

CAPE CANAVERAL, Fla. – Workers prepare to offload NASA's GOES-P meteorological satellite from a U.S. Air Force C-17 aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida.    GOES-P, the latest Geostationary Operational Environmental Satellite, was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA.  GOES-P is designed to watch for storm development and observed current weather conditions on Earth.  Launch of GOES-P is targeted for no earlier than Feb. 25, 2010, from Launch Complex 37 aboard a United Launch Alliance Delta IV rocket.  For information on GOES-P, visit http://goespoes.gsfc.nasa.gov/goes/spacecraft/n_p_spacecraft.html. Photo credit: NASA/Amanda Diller KSC-2009-6863

CAPE CANAVERAL, Fla. – Workers prepare to offload NASA's GOES-P meteor...

CAPE CANAVERAL, Fla. – Workers prepare to offload NASA's GOES-P meteorological satellite from a U.S. Air Force C-17 aircraft at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. GOES-P,... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, NASA's GOES-P meteorological satellite has been offloaded from the U.S. Air Force C-17 aircraft on which it was delivered.    GOES-P, the latest Geostationary Operational Environmental Satellite, was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA.  GOES-P is designed to watch for storm development and observed current weather conditions on Earth.  Launch of GOES-P is targeted for no earlier than Feb. 25, 2010, from Launch Complex 37 aboard a United Launch Alliance Delta IV rocket.  For information on GOES-P, visit http://goespoes.gsfc.nasa.gov/goes/spacecraft/n_p_spacecraft.html. Photo credit: NASA/Amanda Diller KSC-2009-6867

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, NASA's GOES-P meteorological satellite has been offloaded from the U.S. Air Force C-17 aircraft on which it was ... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers roll NASA's GOES-P meteorological satellite from the cargo bay of a U.S. Air Force C-17 aircraft.    GOES-P, the latest Geostationary Operational Environmental Satellite, was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA.  GOES-P is designed to watch for storm development and observed current weather conditions on Earth.  Launch of GOES-P is targeted for no earlier than Feb. 25, 2010, from Launch Complex 37 aboard a United Launch Alliance Delta IV rocket.  For information on GOES-P, visit http://goespoes.gsfc.nasa.gov/goes/spacecraft/n_p_spacecraft.html. Photo credit: NASA/Amanda Diller KSC-2009-6866

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers roll NASA's GOES-P meteorological satellite from the cargo bay of a U.S. Air Force C-17 aircraft. GOE... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers set up a ramp to assist with the offloading of NASA's GOES-P meteorological satellite from the cargo bay of a U.S. Air Force C-17 aircraft.    GOES-P, the latest Geostationary Operational Environmental Satellite, was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA.  GOES-P is designed to watch for storm development and observed current weather conditions on Earth.  Launch of GOES-P is targeted for no earlier than Feb. 25, 2010, from Launch Complex 37 aboard a United Launch Alliance Delta IV rocket.  For information on GOES-P, visit http://goespoes.gsfc.nasa.gov/goes/spacecraft/n_p_spacecraft.html. Photo credit: NASA/Amanda Diller KSC-2009-6865

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, workers set up a ramp to assist with the offloading of NASA's GOES-P meteorological satellite from the cargo bay... More

CAPE CANAVERAL, Fla. – NASA's GOES-P meteorological satellite is delivered to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida aboard a U.S. Air Force C-17 aircraft.    GOES-P, the latest Geostationary Operational Environmental Satellite, was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA.  GOES-P is designed to watch for storm development and observed current weather conditions on Earth.  Launch of GOES-P is targeted for no earlier than Feb. 25, 2010, from Launch Complex 37 aboard a United Launch Alliance Delta IV rocket.  For information on GOES-P, visit http://goespoes.gsfc.nasa.gov/goes/spacecraft/n_p_spacecraft.html. Photo credit: NASA/Amanda Diller KSC-2009-6862

CAPE CANAVERAL, Fla. – NASA's GOES-P meteorological satellite is deliv...

CAPE CANAVERAL, Fla. – NASA's GOES-P meteorological satellite is delivered to the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida aboard a U.S. Air Force C-17 aircraft. GOES-P, the latest ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, passes the Vehicle Assembly Building en route to the Space Station Processing Facility. The state-of-the-art particle physics detector arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. It will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter.      AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011.  Photo credit: NASA/Frankie Martin KSC-2010-4495

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a t...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, passes the Vehicle Assembly Building en route to the Space Station Processi... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media and workers watch as the Alpha Magnetic Spectrometer (AMS) is offloaded from an Air Force C-5M aircraft on the Shuttle Landing Facility runway. The state-of-the-art particle physics detector arrived at Kennedy from Europe and will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter.      AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011.  Photo credit: NASA/Frankie Martin KSC-2010-4540

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, med...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media and workers watch as the Alpha Magnetic Spectrometer (AMS) is offloaded from an Air Force C-5M aircraft on the Shuttle Landing Facility r... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media and workers watch as the Alpha Magnetic Spectrometer (AMS) is offloaded from an Air Force C-5M aircraft on the Shuttle Landing Facility runway. The state-of-the-art particle physics detector arrived at Kennedy from Europe and will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter.      AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011.  Photo credit: NASA/Frankie Martin KSC-2010-4539

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, med...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media and workers watch as the Alpha Magnetic Spectrometer (AMS) is offloaded from an Air Force C-5M aircraft on the Shuttle Landing Facility r... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, arrives at the Space Station Processing Facility, where it will be processed for launch. The state-of-the-art particle physics detector arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe. It will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter.      AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011.  Photo credit: NASA/Frankie Martin KSC-2010-4497

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a t...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, arrives at the Space Station Processing Facility, where it will be processe... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload the next section of the  Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch.         AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller KSC-2010-4489

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, wor...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload the next section of the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft. A tractor-trailer will ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload a section of the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch.        AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller KSC-2010-4486

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, wor...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload a section of the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft. A tractor-trailer will transpor... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, is on its way to the Space Station Processing Facility, where it will be processed for launch. AMS arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe.              AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour,   targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin KSC-2010-4494

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a t...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, is on its way to the Space Station Processing Facility, where it will be pr... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft, which flew in from Europe. The tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch. The state-of-the-art particle physics detector is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter.      AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011.  Photo credit: NASA/Jack Pfaller KSC-2010-4493

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, wor...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload the Alpha Magnetic Spectrometer, or AMS, from an Air Force C-5M aircraft, which flew in from Europe. The tractor-trail... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers offload the Alpha Magnetic Spectrometer (AMS) from an Air Force C-5M aircraft on the Shuttle Landing Facility runway. The state-of-the-art particle physics detector arrived at Kennedy from Europe and will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter.      AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011.  Photo credit: NASA/Frankie Martin KSC-2010-4542

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, wor...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers offload the Alpha Magnetic Spectrometer (AMS) from an Air Force C-5M aircraft on the Shuttle Landing Facility runway. The state-of-the-... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, arrives on the Shuttle Landing Facility runway aboard an Air Force C-5M aircraft from Europe. The state-of-the-art particle physics detector is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter.      AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011.  Photo credit: NASA/Jack Pfaller KSC-2010-4482

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, arrives on the Shuttle Landing Facility runway aboard an Air Force C-5M aircraft from Europe. The stat... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload an Alpha Magnetic Spectrometer, or AMS, section from an Air Force C-5M aircraft. A tractor-trailer will transport the AMS from the Shuttle Landing Facility runway to the Space Station Processing Facility, where it will be processed for launch.        AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller KSC-2010-4485

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, wor...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers begin to offload an Alpha Magnetic Spectrometer, or AMS, section from an Air Force C-5M aircraft. A tractor-trailer will transport the ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media and the crew of space shuttle Endeavour's STS-134 mission gather on the Shuttle Landing Facility runway to check out the Alpha Magnetic Spectrometer, or AMS, which arrived aboard an Air Force C-5M aircraft from Europe.         AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission, targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller KSC-2010-4483

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, med...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media and the crew of space shuttle Endeavour's STS-134 mission gather on the Shuttle Landing Facility runway to check out the Alpha Magnetic S... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media and workers watch as the Alpha Magnetic Spectrometer (AMS) is offloaded from an Air Force C-5M aircraft on the Shuttle Landing Facility runway. One of NASA's T-38 training jets, flown by a member of the STS-134 crew, is in the foreground. The state-of-the-art particle physics detector arrived from Europe and will operate as an external module on the International Space Station to study the universe and its origin by searching for dark matter.      AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011.  Photo credit: NASA/Frankie Martin KSC-2010-4541

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, med...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media and workers watch as the Alpha Magnetic Spectrometer (AMS) is offloaded from an Air Force C-5M aircraft on the Shuttle Landing Facility r... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, arrives on the Shuttle Landing Facility runway aboard an Air Force C-5M aircraft from Europe.          AMS is a state-of-the-art particle physics detector is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett KSC-2010-4474

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, arrives on the Shuttle Landing Facility runway aboard an Air Force C-5M aircraft from Europe. ... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, at the Space Station Processing Facility, where it will be processed for launch. AMS arrived on Kennedy's Shuttle Landing Facility aboard an Air Force C-5M aircraft from Europe.              AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour,   targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin KSC-2010-4496

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a t...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, at the Space Station Processing Facility, where it will be processed for la... More

CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician releases the bolts on a panel that protected the Alpha Magnetic Spectrometer, or AMS, during shipment. The Air Force C-5M flight crew that delivered AMS to Kennedy's Shuttle Landing Facility left their signatures and good wishes for the success of the mission on the panel.        AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour,   targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin KSC-2010-4506

CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NA...

CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a technician releases the bolts on a panel that protected the Alpha Magnetic Spectrometer, or AMS, dur... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International processing facility at Vandenberg Air Force Base in California.  Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.  Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing KSC-2011-2633

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is ...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Forc... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft arrives at Vandenberg Air Force Base in California from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.            Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing KSC-2011-2623

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft arr...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft arrives at Vandenberg Air Force Base in California from Campos, Brazil, aboard a U.S. Air Force C-17 transport plane. Following final tests, th... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California.  Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.    Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing KSC-2011-2638

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is ...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is in the Spaceport Systems International payload processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Force C-... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is offloaded from a U.S. Air Force C-17 transport at Vandenberg Air Force Base in California. The aircraft traveled from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.        Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing KSC-2011-2630

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is ...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is offloaded from a U.S. Air Force C-17 transport at Vandenberg Air Force Base in California. The aircraft traveled from Campos, Brazil. Follow... More

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International processing facility at Vandenberg Air Force Base in California.  Earlier, a U.S. Air Force C-17 transport plane delivered the spacecraft from Campos, Brazil. Following final tests, the spacecraft will be integrated to a United Launch Alliance Delta II rocket in preparation for the targeted June launch to low Earth orbit.      Aquarius, the NASA-built primary instrument on the SAC-D spacecraft, will map global changes in salinity at the ocean's surface. Salinity is a key measurement for understanding how changes in rainfall, evaporation and the melting of freezing of ice influence ocean circulation and are linked to variations in Earth's climate. The three-year mission will provide new insights into how variations in ocean surface salinity relate to these fundamental climate processes. Photo credit: VAFB/30th Space Wing KSC-2011-2631

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is ...

VANDENBERG AIR FORCE BASE, Calif. -- The Aquarius/SAC-D spacecraft is transported to the Spaceport Systems International processing facility at Vandenberg Air Force Base in California. Earlier, a U.S. Air Forc... More

Previous

of 2

Next