visibility Similar

NASA's Lunar Reconnaissance Orbiter (LRO) ROTATION & LIFT

NASA's Lunar Reconnaissance Orbiter (LRO) ROTATION & LIFT

CAPE CANAVERAL, Fla. – Workers inspect the solar arrays on the Magnetospheric Multiscale, or MMS, observatories in the Building 1 D high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two comprising the lower stack arrived Oct. 29. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett KSC-2014-4491

VANDENBERG AIR FORCE BASE, Calif. – Inside an environmental enclosure at Vandenberg Air Force Base's processing facility in California, technicians remove a section of the C-plate from the interface of NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, spacecraft and its Orbital Sciences Pegasus XL rocket. The C-plate protected the spacecraft during mating operations. The uniting of the spacecraft with the rocket is a major milestone in prelaunch preparations. After processing of the rocket and spacecraft are complete, they will be flown on Orbital's L-1011 carrier aircraft from Vandenberg to the Ronald Reagan Ballistic Missile Defense Test Site on the Pacific Ocean’s Kwajalein Atoll for launch. The high-energy x-ray telescope will conduct a census of black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. For more information, visit http://www.nasa.gov/nustar. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-1530

TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians use a crane to position the Radiation Belt Storm Probes, or RBSP, spacecraft A atop RBSP B. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann KSC-2012-4076

CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , the STSS Demonstrator SV-1 spacecraft is moved toward the orbital insertion system. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] ) KSC-2009-4624

NASA's Lunar Reconnaissance Orbiter (LRO) ROTATION & LIFT

CAPE CANAVERAL, Fla. - In the Payload Hazardous Servicing Facility, or PHSF, at NASA's Kennedy Space Center in Florida, workers position the Orbital Replacement Unit Carrier, or ORUC, onto a stand after it was returned back to the clean room from Launch Pad 39A. The payload for Hubble servicing mission 4 comprises four carriers holding various equipment for the mission. In the PHSF, the carriers will be stored until a new target launch date in 2009 can be set for Atlantis’ STS-125 mission. Atlantis’ October target launch date was delayed after a device on board Hubble, used in the storage and transmission of science data to Earth, shut down on Sept. 27. Replacing the broken device will be added to Atlantis’ servicing mission to the telescope. Photo credit: NASA/Jim Grossmann KSC-08pd3241

SPD-SOHO-soho_photo13. NASA public domain image colelction.

code Related

VANDENBERG AIR FORCE BASE, Calif. - At Vandenberg Air Force Base in California, NASA's Interstellar Boundary Explorer, or IBEX, spacecraft is ready for spin balance testing. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from a Pegasus XL rocket on Oct. 5. Photo credit: NASA/VAFB KSC-08pd2510

VANDENBERG AIR FORCE BASE, Calif. - At Vandenberg Air Force Base in California, technicians help place NASA's Interstellar Boundary Explorer, or IBEX, spacecraft onto a stand for spin balance testing. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from a Pegasus XL rocket on Oct. 5. Photo credit: NASA/VAFB KSC-08pd2515

VANDENBERG AIR FORCE BASE, Calif. - At Vandenberg Air Force Base in California, a technician checks NASA's Interstellar Boundary Explorer, or IBEX, spacecraft undergoing spin balance testing. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from a Pegasus XL rocket on Oct. 5. Photo credit: NASA/VAFB KSC-08pd2511

VANDENBERG AIR FORCE BASE, Calif. - At Vandenberg Air Force Base in California, the NASA's Interstellar Boundary Explorer, or IBEX, spacecraft is lowered onto a spin stand for testing. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from a Pegasus XL rocket on Oct. 5. Photo credit: NASA/VAFB KSC-08pd2509

VANDENBERG AIR FORCE BASE, Calif. - At Vandenberg Air Force Base in California, technicians help guide an overhead crane toward NASA's Interstellar Boundary Explorer, or IBEX, spacecraft below it. IBEX is undergoing spin balance testing. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from a Pegasus XL rocket on Oct. 5. Photo credit: NASA/VAFB KSC-08pd2512

VANDENBERG AIR FORCE BASE, Calif. - At Vandenberg Air Force Base in California, the NASA's Interstellar Boundary Explorer, or IBEX, spacecraft seen here is being prepared for a spin balance test. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from a Pegasus XL rocket on Oct. 5. Photo credit: NASA/VAFB KSC-08pd2506

VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, technicians begin to secure NASA's Interstellar Boundary Explorer, or IBEX, mission spacecraft on the mobile stand. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from the Pegasus XL rocket on Oct. 5. Photo credit: NASA KSC-08pd2412

VANDENBERG AIR FORCE BASE, Calif. - At Vandenberg Air Force Base in California, a technician helps guide the placement of NASA's Interstellar Boundary Explorer, or IBEX, spacecraft onto a stand for spin balance testing. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from a Pegasus XL rocket on Oct. 5. Photo credit: NASA/VAFB KSC-08pd2514

VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, technicians help guide NASA's Interstellar Boundary Explorer, or IBEX, mission spacecraft as an overhead crane lowers it into place on the mobile stand. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from the Pegasus XL rocket on Oct. 5. Photo credit: NASA KSC-08pd2411

VANDENBERG AIR FORCE BASE, Calif. - At Vandenberg Air Force Base in California, the NASA's Interstellar Boundary Explorer, or IBEX, spacecraft is lifted toward a spin stand (behind it) for testing. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from a Pegasus XL rocket on Oct. 5. Photo credit: NASA/VAFB KSC-08pd2508

description

Summary

VANDENBERG AIR FORCE BASE, Calif. - At Vandenberg Air Force Base in California, the NASA's Interstellar Boundary Explorer, or IBEX, spacecraft is lifted toward a spin stand (behind it) for testing. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from a Pegasus XL rocket on Oct. 5. Photo credit: NASA/VAFB

Nothing Found.

label_outline

Tags

kennedy space center vandenberg vandenberg air vandenberg air force base california interstellar boundary explorer interstellar boundary explorer ibex spacecraft spin satellite ibex satellite map first map solar system solar system space first mission edge wind sun flows sun flows pluto collides stars shock shock front atom imagers atom imagers particles termination termination shock study rays safety hazard safety hazard humans orbit earth orbit interference magnetosphere pegasus rocket pegasus xl rocket vafb air force earth observations high resolution maps nasa
date_range

Date

07/08/2008
place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Interstellar Boundary Explorer, Sun Flows, Imagers

Maj. Gen. Kendall Cox, III Corps deputy commanding

map from "A dissertation on the course and probable termination of the Niger"

Whereas a great variety of views are entertained by those concerned; and as great a variety of interest are to be affected, by the termination of the Chesapeake and Ohio canal in the District of Columbia ... [Washington, D. C.n. d.].

Public domain stock image. Silhouette nuclear power plant power plant, science technology.

Ibex-head earrings, Egypt, Ptolemaic Period (332–30 BCE)

A silhouette of a man walking in front of a payoff sign. Termination employee workers.

Public domain stock image. Biphenyl aromatic hydrocarbon, science technology.

Public domain stock image. Dihydrofuran oxygen heterocycle, science technology.

Public domain stock image. Ethoxyethoxy ethanol carbitol, science technology.

Nuclear power plant brokdorf energy, science technology.

KENNEDY SPACE CENTER, FLA. - New Horizons arrives at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station where buildup of its Lockheed Martin Atlas V launch vehicle is complete. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015. KSC-05pd2637

Map from "The History of the Progress and Termination of the Roman Republic ... A new edition ... revised and corrected. With maps"

Topics

kennedy space center vandenberg vandenberg air vandenberg air force base california interstellar boundary explorer interstellar boundary explorer ibex spacecraft spin satellite ibex satellite map first map solar system solar system space first mission edge wind sun flows sun flows pluto collides stars shock shock front atom imagers atom imagers particles termination termination shock study rays safety hazard safety hazard humans orbit earth orbit interference magnetosphere pegasus rocket pegasus xl rocket vafb air force earth observations high resolution maps nasa