launch, rocket

6,933 media by topicpage 1 of 70
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane moves the Ares I-X crew module simulator toward a stand at right.  Other Ares I-X segments are stacked around the floor of the bay.  Ares I-X is the test flight for the Ares I.   The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X, targeted for July 2009, will be the first in a series of unpiloted rocket launches from Kennedy. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for the astronauts.  Photo credit: NASA/Tim Jacobs KSC-2009-1866

CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building ...

CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane moves the Ares I-X crew module simulator toward a stand at right. Other Ares I-X segment... More

Bumper V-2 Launch, NASA history collection

Bumper V-2 Launch, NASA history collection

(July 24, 1950) A new chapter in space flight began in July 1950 with the launch of the first rocket from Cape Canaveral, Florida: the Bumper 8. Shown above, Bumper 8 was an ambitious two-stage rocket program t... More

NASA Jupiter rocket - Early Rockets, Army ballistic missile agency

NASA Jupiter rocket - Early Rockets, Army ballistic missile agency

The Jupiter rocket was designed and developed by the Army Ballistic Missile Agency (ABMA). ABMA launched the Jupiter-A at Cape Canaveral, Florida, on March 1, 1957. The Jupiter vehicle was a direct derivative o... More

NASA Explorer 1 Launch, Army ballistic missile agency

NASA Explorer 1 Launch, Army ballistic missile agency

(January 31, 1958) Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958. After the Russian Sputnik 1 was launched in October 1957, the launching of an American satellite assumed much gr... More

Jupiter-C, the first American Satellite, Explorer 1 launcher

Jupiter-C, the first American Satellite, Explorer 1 launcher

Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958. After the Russian Sputnik 1 was launched in October 1957, the launching of an American satellite assumed much greater importance. A... More

Jupiter-C, the first American Satellite, Explorer 1 launcher

Jupiter-C, the first American Satellite, Explorer 1 launcher

Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958. After the Russian Sputnik 1 was launched in October 1957, the launching of an American satellite assumed much greater importance. A... More

KENNEDY SPACE CENTER, Fla. -- Workers off-load NASA's Genesis spacecraft which arrived at the Shuttle Landing Facility at 3:30 a.m. aboard an Air Force C-17 aircraft.; Lockheed Martin Astronautics built the Genesis spacecraft for NASA in Denver, Colo.; The spacecraft will undergo final launch preparations in the Payload Hazardous Servicing Facility in KSC's industrial area. Genesis will capture samples of the ions and elements in the solar wind and return them to Earth for scientists to use to determine the exact composition of the Sun and the solar system's origin. Launch aboard a Boeing Delta II rocket is scheduled for July 30 at 12:36 p.m. EDT.; NASA's Genesis project in managed by the Jet Propulsion Laboratory in Pasadena, Calif KSC-01pp1049

KENNEDY SPACE CENTER, Fla. -- Workers off-load NASA's Genesis spacecra...

KENNEDY SPACE CENTER, Fla. -- Workers off-load NASA's Genesis spacecraft which arrived at the Shuttle Landing Facility at 3:30 a.m. aboard an Air Force C-17 aircraft.; Lockheed Martin Astronautics built the Gen... More

CAPE CANAVERAL, Fla. - Ares IX upper stage segments’ ballast assemblies are positioned along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for the test of the Ares IX rocket. These ballast assemblies will be installed in the upper stage 1 and 7 segments and will mimic the mass of the fuel.  Their total weight is approximately 160,000 pounds.  The test launch of the Ares IX in 2009 will be the first designed to determine the flight-worthiness of the Ares I rocket.  Ares I is an in-line, two-stage rocket that will transport the Orion crew exploration vehicle to low-Earth orbit. The Ares I first stage will be a five-segment solid rocket booster based on the four-segment design used for the space shuttle. Ares I’s fifth booster segment allows the launch vehicle to lift more weight and reach a higher altitude before the first stage separates from the upper stage, which ignites in midflight to propel the Orion spacecraft to Earth orbit.  Photo credit: NASA/Kim Shiflett KSC-08pd3248

CAPE CANAVERAL, Fla. - Ares IX upper stage segments’ ballast assemblie...

CAPE CANAVERAL, Fla. - Ares IX upper stage segments’ ballast assemblies are positioned along the floor of high bay 4 in the Vehicle Assembly Building at NASA’s Kennedy Space Center, part of the preparations for... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, hardware that will be used in the launch of the Ares I-X rocket is being offloaded from the C-5 aircraft. The hardware consists of a precisely machined, full-scale simulator crew module and launch abort system to form the tip of NASA's Ares I-X rocket. The launch of the 321-foot-tall, full-scale Ares I-X, targeted for July 2009, will be the first in a series of unpiloted rocket launches from Kennedy. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for the astronauts, while their launch abort system will provide safe evacuation if a launch vehicle failure occurs.    Photo credit: NASA/Jack Pfaller KSC-2009-1405

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, hardware that will be used in the launch of the Ares I-X rocket is being offloaded from the C-5 aircraft. The ha... More

Photograph of a Rocket being Lifted onto the Launch Structure to be Prepared for Launch at the Wallops Island Launch Area in Virginia

Photograph of a Rocket being Lifted onto the Launch Structure to be Pr...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft into Astrotech's payload processing facility in Titusville, Fla. to begin final testing and preparations for launch.        The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2818

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft...

CAPE CANAVERAL, Fla. -- A Hyster forklift moves NASA's Juno spacecraft into Astrotech's payload processing facility in Titusville, Fla. to begin final testing and preparations for launch. The solar-power... More

Photograph of Scientists preparing to Lift a Rocket onto the Launch Structure to be Prepared for Launch at the Wallops Island Launch Area in Virginia

Photograph of Scientists preparing to Lift a Rocket onto the Launch St...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

CAPE CANAVERAL, Fla. - With more than 12 times the thrust produced by a Boeing 747 jet aircraft, the Constellation Program's Ares I-X test rocket roars off Launch Complex 39B at NASA's Kennedy Space Center in Florida.  The rocket produces 2.96 million pounds of thrust at liftoff and goes supersonic in 39 seconds.    Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired.  The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals.  For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX.  Photo credit: NASA/Jim Grossmann KSC-2009-5933

CAPE CANAVERAL, Fla. - With more than 12 times the thrust produced by ...

CAPE CANAVERAL, Fla. - With more than 12 times the thrust produced by a Boeing 747 jet aircraft, the Constellation Program's Ares I-X test rocket roars off Launch Complex 39B at NASA's Kennedy Space Center in F... More

CAPE CANAVERAL, Fla. – In the Space Shuttle Main Engine Processing Facility at NASA’s Kennedy Space Center in Florida, a transportation canister is nearly closed around a Pratt Whitney Rocketdyne space shuttle main engine (SSME).    This is the second of the 15 engines used during the Space Shuttle Program to be prepared for transfer to NASA's Stennis Space Center in Mississippi. The engines will be stored at Stennis for future use on NASA's new heavy-lift rocket, the Space Launch System (SLS), which will carry NASA's new Orion spacecraft, cargo, equipment and science experiments to space.  For more information, visit http://www.nasa.gov/shuttle.  Photo credit: NASA/Gianni Woods KSC-2012-1026

CAPE CANAVERAL, Fla. – In the Space Shuttle Main Engine Processing Fac...

CAPE CANAVERAL, Fla. – In the Space Shuttle Main Engine Processing Facility at NASA’s Kennedy Space Center in Florida, a transportation canister is nearly closed around a Pratt Whitney Rocketdyne space shuttle ... More

CAPE CANAVERAL, Fla. – At the NASA Railroad yard at Kennedy Space Center in Florida, helium tank cars are lifted from their trucks onto flat cars in preparation for a journey to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s tank cars will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas.      The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines.  At the peak of the shuttle program, there were approximately 30 cars in the fleet.  About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base.  SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex.  Photo credit: NASA/Jim Grossmann KSC-2012-2888

CAPE CANAVERAL, Fla. – At the NASA Railroad yard at Kennedy Space Cent...

CAPE CANAVERAL, Fla. – At the NASA Railroad yard at Kennedy Space Center in Florida, helium tank cars are lifted from their trucks onto flat cars in preparation for a journey to the Florida East Coast Railway i... More

Photograph of a Rocket being Prepared for Launch at the Wallops Island Launch Area in Virginia

Photograph of a Rocket being Prepared for Launch at the Wallops Island...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center, the external tank for space shuttle Atlantis is lowered toward the solid rocket boosters (the nose cone of one of the boosters is seen here) for mating. The tank and boosters will be secured on the mobile launcher platform below.  Atlantis' STS-125 mission is the fifth and final shuttle servicing mission to NASA’s Hubble Space Telescope.  Launch is targeted for Oct. 8.    Photo credit: NASA/Jack Pfaller KSC-08pd2265

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kenn...

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center, the external tank for space shuttle Atlantis is lowered toward the solid rocket boosters (the nose cone of one of the boos... More

Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The aluminum panels are subjected to confidence panel tests during which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California.    (Highest resolution available) n/a

Under the goals of the Vision for Space Exploration, Ares I is a chief...

Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation sy... More

CAPE CANAVERAL, Fla. -- Workers at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, inspect the left spent booster used during space shuttle Discovery's final launch, after it was lowered onto a tracked dolly for processing.    The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann KSC-2011-1920

CAPE CANAVERAL, Fla. -- Workers at the Solid Rocket Booster Disassembl...

CAPE CANAVERAL, Fla. -- Workers at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida, inspect the left spent booster used during space shuttle Discovery's... More

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 36-A, Cape Canaveral Air Force Station, a Lockheed Martin Atlas Centaur IIA (AC-144) rocket is lifted up the launch tower. The rocket will be used in the launch of TDRS-J, scheduled for  Nov. 20.  The third in a series of telemetry satellites, TDRS-J will help replenish the current constellation of geosynchronous TDRS satellites. The TDRS System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-Earth orbit such as the Hubble Space Telescope. This new advanced series of satellites will extend the availability of TDRS communications services until about 2017. KSC-02pd1525

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 36-A, Cape Canaveral A...

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 36-A, Cape Canaveral Air Force Station, a Lockheed Martin Atlas Centaur IIA (AC-144) rocket is lifted up the launch tower. The rocket will be used in the launch o... More

CAPE CANAVERAL, Fla. –  In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the external fuel tank for space shuttle Atlantis' STS-125 mission is moved out of the checkout cell.  The tank will be lowered into high bay 3 onto the mobile launcher platform and attached to the solid rocket boosters already installed. Atlantis' STS-125 mission is the fifth and final shuttle servicing mission to NASA’s Hubble Space Telescope.  Launch is targeted for May 12.  Photo credit: NASA/Jack Pfaller KSC-2009-1166

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Ken...

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the external fuel tank for space shuttle Atlantis' STS-125 mission is moved out of the checkout cell. The tan... More

CAPE CANAVERAL, Fla. – At the NASA Railroad Yard at NASA’s Kennedy Space Center in Florida, preparations are under way for the departure of a train made up of tank cars.  The railroad’s track runs past Kennedy’s 525-foot-tall Vehicle Assembly Building in the background.  The train is headed for the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas.      The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines.  At the peak of the shuttle program, there were approximately 30 cars in the fleet.  About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base.  SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex.  Photo credit: NASA/Jim Grossmann KSC-2012-3033a

CAPE CANAVERAL, Fla. – At the NASA Railroad Yard at NASA’s Kennedy Spa...

CAPE CANAVERAL, Fla. – At the NASA Railroad Yard at NASA’s Kennedy Space Center in Florida, preparations are under way for the departure of a train made up of tank cars. The railroad’s track runs past Kennedy’... More

Photograph of a Rocket being raised and Prepared for Launch on at the Langley Research Center in Hampton, Virginia

Photograph of a Rocket being raised and Prepared for Launch on at the ...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, and its crew are preparing to recover the left spent booster from the Atlantic Ocean. The round objects on deck are large pumping machines that will be attached to the booster by a hose that will blow out debris and water and then pump in air so the booster can float horizontally on the water's surface for towing back to Port Canaveral in Florida.            The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Ben Smegelsky KSC-2011-1836

CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket boost...

CAPE CANAVERAL, Fla. -- Freedom Star, one of NASA's solid rocket booster retrieval ships, and its crew are preparing to recover the left spent booster from the Atlantic Ocean. The round objects on deck are larg... More

CAPE CANAVERAL, Fla. – A C-17 aircraft arrives on the Shuttle Landing Facility parking apron at NASA's Kennedy Space Center in Florida. The aircraft is delivering the MAVEN spacecraft for processing ahead of a launch later this year on a United Launch Alliance Atlas V rocket.      MAVEN, short for Mars Atmosphere and Volatile Evolution, will orbit Mars to study the Red Planet's upper atmosphere in unprecedented detail. Photo credit: NASA/Tim Jacobs KSC-2013-3165

CAPE CANAVERAL, Fla. – A C-17 aircraft arrives on the Shuttle Landing ...

CAPE CANAVERAL, Fla. – A C-17 aircraft arrives on the Shuttle Landing Facility parking apron at NASA's Kennedy Space Center in Florida. The aircraft is delivering the MAVEN spacecraft for processing ahead of a ... More

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, members of the news media are briefed on the agency's Space Launch System SLS Program Todd May, program manager for Space Launch Systems SLS at NASA's Marshall Space Flight Center in Huntsville, Alabama. The briefing took place in the spaceport's Booster Fabrication Facility BFF. During the Space Shuttle Program, the facility was used for processing forward segments and aft skirts for the solid rocket boosters. The BFF will serve a similar role for the SLS.      Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett KSC-2014-4616

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, memb...

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, members of the news media are briefed on the agency's Space Launch System SLS Program Todd May, program manager for Space Launch Systems SLS at ... More

CAPE CANAVERAL, Fla. – In the Atlantic Ocean off the coast of NASA's Kennedy Space Center in Florida, United Space Alliance Recovery Operations personnel pull a colorful main parachute for the Ares I-X rocket onto the deck of the solid rocket booster recovery ship Freedom Star following the launch of the flight test mission.    Liftoff of the 6-minute flight test was at 11:30 a.m. EDT Oct. 28. This was the first launch from Kennedy's pads of a vehicle other than the space shuttle since the Apollo Program's Saturn rockets were retired.  The parts used to make the Ares I-X booster flew on 30 different shuttle missions ranging from STS-29 in 1989 to STS-106 in 2000. The data returned from more than 700 sensors throughout the rocket will be used to refine the design of future launch vehicles and bring NASA one step closer to reaching its exploration goals.  For information on the Ares I-X vehicle and flight test, visit http://www.nasa.gov/aresIX.  Photo credit: United Space Alliance KSC-2009-5999

CAPE CANAVERAL, Fla. – In the Atlantic Ocean off the coast of NASA's K...

CAPE CANAVERAL, Fla. – In the Atlantic Ocean off the coast of NASA's Kennedy Space Center in Florida, United Space Alliance Recovery Operations personnel pull a colorful main parachute for the Ares I-X rocket o... More

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida.  The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed.        Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-5368

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket boost...

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid r... More

KENNEDY SPACE CENTER, FLA. --  Workers make adjustments on the first part of the fairing around the TDRS-J satellite before encapsulation continues. The satellite is scheduled to be launched aboard a Lockheed Martin Atlas IIA-Centaur rocket from Launch Complex 36-A, Cape Canaveral Air Force Station, Fla., on Dec. 4.  The third in a series of telemetry satellites, TDRS-J will help replenish the current constellation of geosynchronous TDRS satellites. The TDRS System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-Earth orbit such as the Hubble Space Telescope. This new advanced series of satellites will extend the availability of TDRS communications services until about 2017. KSC-02pd1776

KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the first p...

KENNEDY SPACE CENTER, FLA. -- Workers make adjustments on the first part of the fairing around the TDRS-J satellite before encapsulation continues. The satellite is scheduled to be launched aboard a Lockheed M... More

KENNEDY SPACE CENTER, FLA. --  Radar operator Scott Peabody tests the X-band radar array installed on the solid rocket booster retrieval ship Liberty before launch of Space Shuttle Discovery.  It is one of  two Weibel Continuous Pulse Doppler X-band radars located on each of the two SRB retrieval ships.  This one will be located downrange of the launch site. It is one of  two Weibel Continuous Pulse Doppler X-band radars located on each of the two SRB retrieval ships.  This one will be located downrange of the launch site.  Working with the land-based C-band radar, the X-band radars provide velocity and differential shuttle/debris motion information during launch.  The radar data will be sent from the ships via satellite link and analyzed at the C-band radar site located on north Kennedy Space Center.  Photo credit: NASA/George Shelton KSC-06pd2648

KENNEDY SPACE CENTER, FLA. -- Radar operator Scott Peabody tests the ...

KENNEDY SPACE CENTER, FLA. -- Radar operator Scott Peabody tests the X-band radar array installed on the solid rocket booster retrieval ship Liberty before launch of Space Shuttle Discovery. It is one of two... More

KENNEDY SPACE CENTER, FLA. --  An overhead crane lowers a solid rocket booster segment toward a railroad car at the railroad yard at NASA's Kennedy Space Center.  The yellow transportation end cover has already been inserted and is secure.  The spent segment is part of the booster used to launch space shuttle Discovery in October. The segment will be placed on the car and covered for the long trip back to Utah.   After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused after each launch. After hydrolasing the interior of each segment, they are placed on flatbed trucks.  The individual booster segments are transferred to a railhead located at the railroad yard at NASA's Kennedy Space Center. The long train of segments is part of the twin solid rocket boosters used to launch space shuttle Discovery in October.  The NASA Railroad locomotive backs up the rail cars and the segment is lowered onto the car. The covered segments are moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah.  Photo credit: NASA/Amanda Diller KSC-07pd3461

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers a solid rocket...

KENNEDY SPACE CENTER, FLA. -- An overhead crane lowers a solid rocket booster segment toward a railroad car at the railroad yard at NASA's Kennedy Space Center. The yellow transportation end cover has already... More

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a full-size mock-up of the Orion spacecraft and launch abort system were transported to the Kennedy Space Center Visitor Complex. In the background are full-size replicas of the external fuel tank and solid rocket boosters that mark the entranceway to the new Space Shuttle Atlantis exhibit. Crane operators and technicians practice de-stacking operations on mock-ups of Orion and the launch abort system in the Vehicle Assembly Building in order to keep processing procedures and skills current.    Orion is the exploration spacecraft designed to carry crews to space beyond low Earth orbit. It will provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities. Orion’s first unpiloted test flight is scheduled to launch in 2014 atop a Delta IV rocket. A second uncrewed flight test is scheduled for 2017 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Jim Grossmann KSC-2013-2903

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a fu...

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, a full-size mock-up of the Orion spacecraft and launch abort system were transported to the Kennedy Space Center Visitor Complex. In the backgro... More

Photograph of Scientists and Engineers Using a Crane and Other Motor Vehicles in Preparation to Raise a Rocket for Launch at the Langley Research Center in Hampton, Virginia

Photograph of Scientists and Engineers Using a Crane and Other Motor V...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of the US industrial development, work of U.S. government, free to use, no copyright restrictions image - Picryl description

KENNEDY SPACE CENTER, FLA.  --  In the Vehicle Assembly Building, the STS-120 solid rocket booster left aft booster and left aft center segments are being stacked on the mobile launcher platform. STS-120 will be the 23rd flight to the International Space Station.  Space Shuttle Discovery will carry the U.S. Node 2.  Launch is targeted for Oct. 20.   NASA/Jim Grossmann KSC-07pd2086

KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building, the ...

KENNEDY SPACE CENTER, FLA. -- In the Vehicle Assembly Building, the STS-120 solid rocket booster left aft booster and left aft center segments are being stacked on the mobile launcher platform. STS-120 will b... More

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processing facility in Titusville, Fla. install thermal insulation on NASA's Juno magnetometer boom. The boom structure is attached to Juno's solar array #1 that will help power the NASA spacecraft on its mission to Jupiter.      The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2821

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processin...

CAPE CANAVERAL, Fla. -- Technicians in the Astrotech payload processing facility in Titusville, Fla. install thermal insulation on NASA's Juno magnetometer boom. The boom structure is attached to Juno's solar a... More

CAPE CANAVERAL, Fla. –   The Pegasus barge carrying the external tank for space shuttle Atlantis' STS-125 mission to NASA's Hubble Space Telescope is tied to the dock in the turn basin in the Launch Complex 39 Area of NASA's Kennedy Space Center.  The tank will offloaded and moved to the Vehicle Assembly Building.   Once inside the building, the tank will be raised to vertical, lifted and moved into a checkout cell.  Stacking of the tank and solid rocket boosters is planned to start Aug. 7.  Atlantis is targeted to launch Oct. 8.  Photo credit: NASA/Jack Pfaller KSC-08pd1979

CAPE CANAVERAL, Fla. – The Pegasus barge carrying the external tank ...

CAPE CANAVERAL, Fla. – The Pegasus barge carrying the external tank for space shuttle Atlantis' STS-125 mission to NASA's Hubble Space Telescope is tied to the dock in the turn basin in the Launch Complex 39 ... More

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation Belt Storm Probe B, enclosed in a protective shipping container, from a flatbed truck at the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida where Applied Physics Laboratory technicians will begin spacecraft testing and prelaunch preparations.  The twin RBSP spacecraft arrived at Kennedy’s Shuttle Landing Facility in the cargo bay of a U.S. Air Force C-17 aircraft earlier in the day.          The RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. The RBSP instruments will provide the measurements needed to characterize and quantify the plasma processes that produce very energetic ions and relativistic electrons. The mission is part of NASA’s broader Living With a Star Program that was conceived to explore fundamental processes that operate throughout the solar system, and in particular those that generate hazardous space weather effects in the vicinity of Earth and phenomena that could impact solar system exploration. RBSP is scheduled to begin its mission of exploration of Earth's Van Allen Radiation Belts and the extremes of space weather after launch. Launch aboard a United Launch Alliance Atlas V rocket is scheduled for August 23.  For more information, visit http://www.nasa.gov/rbsp.  Photo credit: NASA/Kim Shiflett KSC-2012-2638

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation B...

CAPE CANAVERAL, Fla. – A forklift operator offloads NASA's Radiation Belt Storm Probe B, enclosed in a protective shipping container, from a flatbed truck at the Astrotech payload processing facility near NASA’... More

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-5519

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket boost...

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The... More

CAPE CANAVERAL, Fla. - STS-129 Commander Charles O. Hobaugh, left, is welcomed by Space Shuttle Launch Director Mike Leinbach at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The six astronauts for space shuttle Atlantis’ STS-129 mission have arrived at Kennedy for their launch dress rehearsal, the Terminal Countdown Demonstration Test.    Additional training associated with the test was done last month, but the simulated countdown was postponed because of a scheduling conflict with the launch of NASA’s Ares I-X test rocket.  Launch of Atlantis on its STS-129 mission to the International Space Station is set for Nov. 16. On STS-129, the crew will deliver to the station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm.  For information on the STS-129 mission objectives and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Troy Cryder KSC-2009-6035

CAPE CANAVERAL, Fla. - STS-129 Commander Charles O. Hobaugh, left, is ...

CAPE CANAVERAL, Fla. - STS-129 Commander Charles O. Hobaugh, left, is welcomed by Space Shuttle Launch Director Mike Leinbach at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The six a... More

CAPE CANAVERAL, Fla. – Inside a test cell in the Vehicle Assembly Building at NASA's Kennedy Space Center, a portion of Atlantis’ external tank is sealed to prevent contamination so that technicians can replace a valve after small dings were found on the sealing surface of the quick disconnect system that handles liquid-hydrogen fuel for the shuttle’s three main engines. The tank will be attached to the twin solid rocket boosters on Aug. 3 for the STS-125 mission, the fifth and final shuttle servicing mission to NASA’s Hubble Space Telescope. During the mission, the crew will install new instruments on the telescope, including the Cosmic Origins Spectrograph and the Wide Field Camera 3. A refurbished Fine Guidance Sensor will replace one unit of three now onboard. Mission specialists will also install new gyroscopes, batteries and thermal blankets on the telescope. Launch is targeted for Oct. 8. Photo credit: NASA/Jim Grossmann KSC-08pd2152

CAPE CANAVERAL, Fla. – Inside a test cell in the Vehicle Assembly Buil...

CAPE CANAVERAL, Fla. – Inside a test cell in the Vehicle Assembly Building at NASA's Kennedy Space Center, a portion of Atlantis’ external tank is sealed to prevent contamination so that technicians can replace... More

Photograph of a Rocket being Prepared for Launch at the Wallops Island Launch Area in Virginia

Photograph of a Rocket being Prepared for Launch at the Wallops Island...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, NASA's GOES-P meteorological satellite is moved to the edge of the cargo bay of a U.S. Air Force C-17 aircraft for offloading.    GOES-P, the latest Geostationary Operational Environmental Satellite, was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA.  GOES-P is designed to watch for storm development and observed current weather conditions on Earth.  Launch of GOES-P is targeted for no earlier than Feb. 25, 2010, from Launch Complex 37 aboard a United Launch Alliance Delta IV rocket.  For information on GOES-P, visit http://goespoes.gsfc.nasa.gov/goes/spacecraft/n_p_spacecraft.html. Photo credit: NASA/Amanda Diller KSC-2009-6864

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, NASA's GOES-P meteorological satellite is moved to the edge of the cargo bay of a U.S. Air Force C-17 aircraft f... More

KENNEDY SPACE CENTER, FLA. -- From the deck of Liberty Star, one of two KSC solid rocket booster recovery ships, a crane lowers a one-man submarine into the ocean near Cape Canaveral, Fla. Called DeepWorker 2000, the sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program KSC-00padig014

KENNEDY SPACE CENTER, FLA. -- From the deck of Liberty Star, one of tw...

KENNEDY SPACE CENTER, FLA. -- From the deck of Liberty Star, one of two KSC solid rocket booster recovery ships, a crane lowers a one-man submarine into the ocean near Cape Canaveral, Fla. Called DeepWorker 200... More

Photograph of a Rocket Part being Lifted onto the Launch Structure to be Prepared for Launch at the Wallops Island Launch Area in Virginia

Photograph of a Rocket Part being Lifted onto the Launch Structure to ...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

CAPE CANAVERAL, Fla. -- This panoramic image shows the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. In the far background is the Pegasus Barge carrying the Space Shuttle Program's last external fuel tank, ET-122, into Kennedy's Turn Basin. Once docked, the tank will be offloaded from the barge and transported to the Vehicle Assembly Building (VAB). NASA's Liberty Star solid rocket booster retrieval ship also is docked at the Turn Basin.          The tank traveled 900 miles by sea, carried in the barge, from NASA's Michoud Assembly Facility in New Orleans. Once inside the VAB, it eventually will be attached to space shuttle Endeavour for the STS-134 mission to the International Space Station targeted to launch Feb. 2011. STS-134 currently is scheduled to be the last mission in the shuttle program. The tank, which is the largest element of the space shuttle stack, was damaged during Hurricane Katrina in August 2005 and restored to flight configuration by Lockheed Martin Space Systems Company employees. Photo credit: NASA/Frankie Martin KSC-2010-4900

CAPE CANAVERAL, Fla. -- This panoramic image shows the Launch Complex ...

CAPE CANAVERAL, Fla. -- This panoramic image shows the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. In the far background is the Pegasus Barge carrying the Space Shuttle Program's last exte... More

Photograph of a Scientist Driving a Rocket Part to a Launch Pad at the Langley Research Center in Hampton, Virginia

Photograph of a Scientist Driving a Rocket Part to a Launch Pad at the...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

CAPE CANAVERAL, Fla. -- Workers install hoisting ropes around the left spent booster used during space shuttle Discovery's final launch at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida.          The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann KSC-2011-1914

CAPE CANAVERAL, Fla. -- Workers install hoisting ropes around the left...

CAPE CANAVERAL, Fla. -- Workers install hoisting ropes around the left spent booster used during space shuttle Discovery's final launch at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Cana... More

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane is enlisted to lift the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, into a test cell.    The tank was delivered to Kennedy aboard the Pegasus barge from NASA's Michoud Assembly Facility on Dec. 26. The tank will remain in the test cell until it is transferred into a high bay for mating with the twin solid rocket boosters that will be used on the mission.  Launch of the STS-131 mission to the International Space Station is targeted for March 18.  For information on the STS-131 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Glenn Benson KSC-2010-1066

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kenn...

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a crane is enlisted to lift the external fuel tank for space shuttle Discovery's STS-131 mission, ET-135, into ... More

Photograph of a Rocket Part being Lifted onto the Launch Structure to be Prepared for Launch on at the Wallops Island Launch Area in Virginia

Photograph of a Rocket Part being Lifted onto the Launch Structure to ...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of the US industrial development, work of U.S. government, free to use, no copyright restrictions image - Picryl description

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, workers prepare to store External Tank-135, newly delivered to the transfer aisle of the Vehicle Assembly Building.  The tank arrived in Florida on Dec. 26 aboard the Pegasus barge, towed by a solid rocket booster retrieval ship from NASA's Michoud Assembly Facility near New Orleans.    ET-135 will be used to launch space shuttle Discovery on the STS-131 mission to the International Space Station. Launch is targeted for March 18.  For information on the components of the space shuttle and the STS-131 mission, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts131/index.html. Photo credit: NASA/Jack Pfaller KSC-2010-1008

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, work...

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, workers prepare to store External Tank-135, newly delivered to the transfer aisle of the Vehicle Assembly Building. The tank arrived in Florida... More

Photograph of a Rocket in the Launch Structure at the Langley Research Center in Hampton, Viriginia

Photograph of a Rocket in the Launch Structure at the Langley Research...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

CAPE CANAVERAL, Fla. --  Towed on its 76-wheeled orbiter transporter, space shuttle Discovery rolls into the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center.  Discovery will be raised to vertical and lifted into high bay 3 for attachment to its external fuel tank and solid rocket boosters in preparation for its upcoming STS-124 mission to the International Space Station.  On the mission, the STS-124 crew will transport the Japanese Experiment Module - Pressurized Module and the Japanese Remote Manipulator System to the space station.  Launch of Discovery is targeted for May 31. Photo credit: NASA/Troy Cryder KSC-08pd1029

CAPE CANAVERAL, Fla. -- Towed on its 76-wheeled orbiter transporter, ...

CAPE CANAVERAL, Fla. -- Towed on its 76-wheeled orbiter transporter, space shuttle Discovery rolls into the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center. Discovery will be ra... More

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's payload processing facility in Titusville, Fla. remove the protective wrapping from NASA's Juno spacecraft to begin final testing and preparations for launch.      The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. Juno is scheduled to launch aboard an Atlas V rocket from Cape Canaveral, Fla. Aug. 5. For more information visit, www.nasa.gov/juno. Photo credit: NASA/Jack Pfaller    It will splash down into the Atlantic Ocean where the ship and its crew will recover it and tow it back through Port Canaveral for refurbishing for another launch. The STS-124 mission is the second of three flights launching components to complete the Japan Aerospace Exploration Agency's Kibo laboratory. The shuttle crew will install Kibo's large Japanese Pressurized Module and its remote manipulator system, or RMS. Photo credit: USA/Jeff Suter KSC-2011-2829

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's pay...

CAPE CANAVERAL, Fla. -- Lockheed-Martin technicians at Astrotech's payload processing facility in Titusville, Fla. remove the protective wrapping from NASA's Juno spacecraft to begin final testing and preparati... More

CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final launch.                          The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Frank Michaux KSC-2011-1874

CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NAS...

CAPE CANAVERAL, Fla. -- Crew members on board Liberty Star, one of NASA's solid rocket booster retrieval ships, haul in the massive parachute from the right spent booster from space shuttle Discovery's final la... More

KENNEDY SPACE CENTER, FLA. -    Inside the Vehicle Assembly Building at NASA's Kennedy Space Center, a solid rocket booster segment (upper left) is mated with the lower segment.  The booster is part of the shuttle stack for Discovery and mission STS-121.  Launch of Discovery is scheduled for no earlier than May.  Photo credit: NASA/Jack Pfaller KSC-06pd0256

KENNEDY SPACE CENTER, FLA. - Inside the Vehicle Assembly Building a...

KENNEDY SPACE CENTER, FLA. - Inside the Vehicle Assembly Building at NASA's Kennedy Space Center, a solid rocket booster segment (upper left) is mated with the lower segment. The booster is part of the shut... More

KENNEDY SPACE CENTER, Fla. --  Twin columns of flame from the solid rocket boosters illuminate the clouds of smoke and steam as Space Shuttle Discovery lifts off on mission STS-92, the fifth construction flight for the International Space Station. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery’s landing is expected Oct. 22 at 2:10 p.m. EDT KSC-00pp1551

KENNEDY SPACE CENTER, Fla. -- Twin columns of flame from the solid ro...

KENNEDY SPACE CENTER, Fla. -- Twin columns of flame from the solid rocket boosters illuminate the clouds of smoke and steam as Space Shuttle Discovery lifts off on mission STS-92, the fifth construction flight... More

KENNEDY SPACE CENTER, FLA.  --  Another STS-120 solid rocket booster segment waits to be stacked in the Vehicle Assembly Building on the mobile launcher platform.  STS-120 will be the 23rd flight to the International Space Station.  Space Shuttle Discovery will carry the U.S. Node 2.  Launch is targeted for Oct. 20.   NASA/Jim Grossmann KSC-07pd2088

KENNEDY SPACE CENTER, FLA. -- Another STS-120 solid rocket booster s...

KENNEDY SPACE CENTER, FLA. -- Another STS-120 solid rocket booster segment waits to be stacked in the Vehicle Assembly Building on the mobile launcher platform. STS-120 will be the 23rd flight to the Interna... More

CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, invited guests tour the blockhouse at Complex 5/6 during a celebration of Alan Shepard's historic flight 50 years ago. From left are Robert Sieck, former shuttle launch director; Andy Anderson, former manager for communications in the Mercury Mission Control Center; Bob Moser, former chief test conductor for the Mercury-Redstone launches; and John Twigg, former backup chief test conductor for the Mercury-Redstone launches.    The celebration was held at the launch site of the first U.S. manned spaceflight May 5, 1961, to mark the 50th anniversary of the flight.  Fifty years ago, astronaut Alan Shepard lifted off inside the Mercury capsule, "Freedom 7," atop an 82-foot-tall Mercury-Redstone rocket at 9:34 a.m. EST, sending him on a remarkably successful, 15-minute suborbital flight. The event was attended by more than 200 workers from the original Mercury program and included a re-creation of Shepard's flight and recovery, as well as a tribute to his contributions as a moonwalker on the Apollo 14 lunar mission. For more information, visit www.nasa.gov/topics/history/milestones/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-3333

CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida...

CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station in Florida, invited guests tour the blockhouse at Complex 5/6 during a celebration of Alan Shepard's historic flight 50 years ago. From left are Rober... More

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, hardware that will be used in the launch of the Ares I-X rocket is being offloaded from the C-5 aircraft. The hardware consists of a precisely machined, full-scale simulator crew module and launch abort system to form the tip of NASA's Ares I-X rocket. The launch of the 321-foot-tall, full-scale Ares I-X, targeted for July 2009, will be the first in a series of unpiloted rocket launches from Kennedy. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for the astronauts, while their launch abort system will provide safe evacuation if a launch vehicle failure occurs.    Photo credit: NASA/Jack Pfaller KSC-2009-1406

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kenne...

CAPE CANAVERAL, Fla. – At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, hardware that will be used in the launch of the Ares I-X rocket is being offloaded from the C-5 aircraft. The ha... More

Ham Launch, NASA Mercury project

Ham Launch, NASA Mercury project

Full Description: (January 31, 1961) Mercury-Redstone 2 (MR-2) Launch with chimpanzee Ham aboard. Monkeys had been flown into space before, but Ham was the first higher primate to test a spacecraft...Image # : 61C-1012

Photograph of a Rocket Part being Transported on a Wagon at the Wallops Island Launch Area in Virginia

Photograph of a Rocket Part being Transported on a Wagon at the Wallop...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph - NASA, space exploration, work of US government, free to use, no copyright restrictions image - Picryl description

Photograph of a Rocket being Lifted onto the Launch Structure to be Prepared for Launch at the Wallops Island Launch Area in Virginia

Photograph of a Rocket being Lifted onto the Launch Structure to be Pr...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

Jupiter-C, the first American Satellite, Explorer 1 launcher

Jupiter-C, the first American Satellite, Explorer 1 launcher

This is a comparison illustration of the Redstone, Jupiter-C, and Mercury Redstone launch vehicles. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile. Originally d... More

The Launch of Mercury-Redstone. NASA public domain image colelction.

The Launch of Mercury-Redstone. NASA public domain image colelction.

(May 5, 1961) The launch of the Mercury-Redstone (MR-3), Freedom 7. MR-3 placed the first American astronaut, Alan Shepard, in suborbit on May 5, 1961...UID: SPD-MARSH-6100884

Photograph of a Rocket being Lifted onto the Launch Structure to be Prepared for Launch at the Wallops Island Launch Area in Virginia

Photograph of a Rocket being Lifted onto the Launch Structure to be Pr...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

Launch of Friendship 7, NASA Mercury project

Launch of Friendship 7, NASA Mercury project

Full Description: (February 20, 1962) Launch of Friendship 7, the first American manned orbital space flight. Astronaut John Glenn aboard, the Mercury-Atlas rocket is launched from Pad 14...Image # : 62PC-0011

CAPE CANAVERAL, Fla. -- Launch of Friendship 7, the first manned orbital space flight. Astronaut John Glenn aboard, the Mercury-Atlas rocket is launched from Pad 14. Photo credit: NASA KSC-62PC-0009

CAPE CANAVERAL, Fla. -- Launch of Friendship 7, the first manned orbit...

CAPE CANAVERAL, Fla. -- Launch of Friendship 7, the first manned orbital space flight. Astronaut John Glenn aboard, the Mercury-Atlas rocket is launched from Pad 14. Photo credit: NASA

Saturn I - Saturn Apollo Program

Saturn I - Saturn Apollo Program

The Saturn I (SA-3) flight lifted off from Kennedy Space Center launch Complex 34, November 16, 1962. The third launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the d... More

Photograph of a Rocket in the Launch Structure at the Wallops Island Launch Area in Virginia

Photograph of a Rocket in the Launch Structure at the Wallops Island L...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

Photograph of a Rocket Launch at the Wallops Island Launch Area in Virginia

Photograph of a Rocket Launch at the Wallops Island Launch Area in Vir...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

Photograph of a Rocket in the Launch Structure at the Wallops Island Launch Area in Virginia

Photograph of a Rocket in the Launch Structure at the Wallops Island L...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA experimental aircraft development, free to use, no copyright restrictions image - Picryl description

Photograph of a Rocket in the Launch Structure at the Wallops Island Launch Area in Virginia

Photograph of a Rocket in the Launch Structure at the Wallops Island L...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

Photograph of a Rocket in the Launch Structure at the Wallops Island Launch Area in Virginia

Photograph of a Rocket in the Launch Structure at the Wallops Island L...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph - NASA, space exploration, work of US government, free to use, no copyright restrictions image - Picryl description

Photograph of Collected Debris from a Rocket Launch

Photograph of Collected Debris from a Rocket Launch

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph - NASA, space exploration, work of US government, free to use, no copyright restrictions image - Picryl description

The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern.  Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch. n/a

The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch...

The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles, developed at the Marshall Space Flight Center (MSFC) under the dir... More

The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles developed at the Marshall Space Flight Center (MSFC), under the direction of Dr. Wernher von Braun, incorporated a Saturn I, Block I engine. The typical height of a Block I vehicle was approximately 163 feet and had only one live stage. It consisted of eight tanks, each 70 inches in diameter, clustered around a central tank, 105 inches in diameter. Four of the external tanks were fuel tanks for the RP-1 (kerosene) fuel. The other four, spaced alternately with the fuel tanks, were liquid oxygen tanks as was the large center tank. All fuel tanks and liquid oxygen tanks drained at the same rates respectively. The thrust for the stage came from eight H-1 engines, each producing a thrust of 165,000 pounds, for a total thrust of over 1,300,000 pounds. The engines were arranged in a double pattern.  Four engines, located inboard, were fixed in a square pattern around the stage axis and canted outward slightly, while the remaining four engines were located outboard in a larger square pattern offset 40 degrees from the inner pattern. Unlike the inner engines, each outer engine was gimbaled. That is, each could be swung through an arc. They were gimbaled as a means of steering the rocket, by letting the instrumentation of the rocket correct any deviations of its powered trajectory. The block I required engine gimabling as the only method of guiding and stabilizing the rocket through the lower atmosphere. The upper stages of the Block I rocket reflected the three-stage configuration of the Saturn I vehicle. Like SA-3, the SA-4 flight’s upper stage ejected 113,560 liters (30,000 gallons) of ballast water in the upper atmosphere for "Project Highwater" physics experiment. Release of this vast quantity of water in a near-space environment marked the second purely scientific large-scale experiment. The SA-4 was the last Block I rocket launch. n/a

The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch...

The Saturn I (SA-4) flight lifted off from Kennedy Space Center launch Complex 34, March 28, 1963. The fourth launch of Saturn launch vehicles developed at the Marshall Space Flight Center (MSFC), under the dir... More

Photograph of a Rocket Part inside of a Warehouse at Wallops Island Launch Area in Virginia

Photograph of a Rocket Part inside of a Warehouse at Wallops Island La...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

Photograph of a Rocket being Lifted to be Prepared for Launch on a Structure at the Wallops Island Launch Area in Virginia

Photograph of a Rocket being Lifted to be Prepared for Launch on a Str...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

Photograph of a Vehicle Transporting a Rocket next to the Entrance Signto the Wallops Island Launch Area

Photograph of a Vehicle Transporting a Rocket next to the Entrance Sig...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

Photograph of a Rocket being Prepared for Launch on a Structure at the Wallops Island Launch Area in Virginia

Photograph of a Rocket being Prepared for Launch on a Structure at the...

SCOUT (Solid Controlled Orbital Utility Test) Project Office Files Public domain photograph of NASA rocket launch, free to use, no copyright restrictions image - Picryl description

Radio Frequency Interference Test - Launch Complex (LC)-37A - Cape

Radio Frequency Interference Test - Launch Complex (LC)-37A - Cape

View of a Saturn I on the launch pad for a Radio Frequency Interference Test, to be conducted at LC-37A. Cape Kennedy Missile Test Center

A Saturn 1B space launch vehicle lifts off from Launch Complex 34 carrying Apollo 7 astronauts Walter M. Schirra Jr., Donn F. Eisele and Walter Cunningham

A Saturn 1B space launch vehicle lifts off from Launch Complex 34 carr...

The original finding aid described this photograph as: Base: Cape Kennedy State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Nasa Release Status: Released to Public Combined... More

Apollo 11 Launch, NASA Apollo program

Apollo 11 Launch, NASA Apollo program

(July 16, 1969) The Apollo 11 Saturn V space vehicle lifts off with astronauts Neil A. Armstrong, Michael Collins and Edwin E. Aldrin, Jr., at 9:32 a.m. EDT July 16, 1969, from Kennedy Space Center's Launch Com... More

Apollo 11 Launch, NASA Apollo program

Apollo 11 Launch, NASA Apollo program

(July 16, 1969) The American flag heralds the flight of Apollo 11, the first Lunar landing mission. The Apollo 11 Saturn V space vehicle lifted off with astronauts Neil A. Armstrong, Michael Collins and Edwin E... More

Apollo 11 Launch, Apollo program Saturn V rocket images

Apollo 11 Launch, Apollo program Saturn V rocket images

(July 16, 1969) At 9:32 a.m. EDT, the swing arms move away and a plume of flame signals the liftoff of the Apollo 11 Saturn V space vehicle and astronauts Neil A. Armstrong, Michael Collins and Edwin E. Aldrin,... More

LAUNCH - APOLLO 9 - CAPE, NASA Apollo program

LAUNCH - APOLLO 9 - CAPE, NASA Apollo program

S69-25862 (3 March 1969) --- Framed by palm trees in the foreground, the Apollo 9 (Spacecraft 104/Lunar Module 3/ Saturn 504) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC) ... More

Saturn V - Saturn Apollo Program

Saturn V - Saturn Apollo Program

The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Leaving a w... More

Saturn V - Saturn Apollo Program

Saturn V - Saturn Apollo Program

The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely r... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell.  In the background, workers are helping place the heat shield, just removed from the Phoenix, onto a platform. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1091

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the Phoenix Mars Lander (foreground) can be seen inside the backshell. In the background, workers are helping place the heat shield, j... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft.  The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1061

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. ... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1104

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians prepare to install the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, an overhead crane moves the heat shield toward a platform at left.  The heat shield was removed from the Phoenix Mars Lander spacecraft at right. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1087

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, an overhead crane moves the heat shield toward a platform at left. The heat shield was removed from the Phoenix Mars Lander spacecraf... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers help guide the heat shield onto a platform.  The heat shield was removed from the Phoenix Mars Lander spacecraft.. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1089

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, workers help guide the heat shield onto a platform. The heat shield was removed from the Phoenix Mars Lander spacecraft.. The Phoenix ... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1103

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, the heat shield for the Phoenix Mars Lander is moved into position for installation on the spacecraft. The Phoenix mission is the firs... More

KENNEDY SPACE CENTER, FLA. --  This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell.  The spacecraft will undergo spin testing on the spin table to which it is attached in the Payload Hazardous Servicing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1097

KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lan...

KENNEDY SPACE CENTER, FLA. -- This closeup shows the Phoenix Mars Lander spacecraft nestled inside the backshell. The spacecraft will undergo spin testing on the spin table to which it is attached in the Payl... More

CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the 525-foot-tall Vehicle Assembly Building, left, and the twin bays of the Orbiter Processing Facility, right, at NASA’s Kennedy Space Center in Florida.  The train is on its way to the Florida East Coast Railway interchange in Titusville, Fla., where the train’s helium tank cars, a liquid oxygen tank car, and a liquid hydrogen dewar or tank car will be transferred for delivery to the SpaceX engine test complex outside McGregor, Texas.    The railroad cars were needed in support of the Space Shuttle Program but currently are not in use by NASA following the completion of the program in 2011. Originally, the tankers belonged to the U.S. Bureau of Mines.  At the peak of the shuttle program, there were approximately 30 cars in the fleet.  About half the cars were returned to the bureau as launch activity diminished. Five tank cars are being loaned to SpaceX and repurposed to support their engine tests in Texas. Eight cars previously were shipped to California on loan to support the SpaceX Falcon 9 rocket launches from Space Launch Complex-4 on Vandenberg Air Force Base.  SpaceX already has three helium tank cars previously used for the shuttle program at Space Launch Complex-40 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/spacex.  Photo credit: NASA/Jim Grossmann KSC-2012-3038a

CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the 52...

CAPE CANAVERAL, Fla. – A NASA Railroad train passes in front of the 525-foot-tall Vehicle Assembly Building, left, and the twin bays of the Orbiter Processing Facility, right, at NASA’s Kennedy Space Center in ... More

KENNEDY SPACE CENTER, FLA. -    Inside the Vehicle Assembly Building at NASA's Kennedy Space Center, a solid rocket booster segment is being lifted by a 325-ton crane for stacking.  The booster is part of the shuttle stack for Discovery and mission STS-121.  Launch of Discovery is scheduled for no earlier than May. Photo credit: NASA/Jack Pfaller KSC-06pd0255

KENNEDY SPACE CENTER, FLA. - Inside the Vehicle Assembly Building a...

KENNEDY SPACE CENTER, FLA. - Inside the Vehicle Assembly Building at NASA's Kennedy Space Center, a solid rocket booster segment is being lifted by a 325-ton crane for stacking. The booster is part of the s... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft.  The spacecraft arrived May 7 via a U.S. Air Force C-17 Globemaster III at the Shuttle Landing Facility. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.  Photo credit: NASA/George Shelton KSC-07pd1062

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility at Kennedy Space Center, a crane lifts the shipping crate from around the Phoenix spacecraft. The spacecraft arrived May 7 via a U.S. ... More

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing.  The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA’s Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida.   Photo credit: NASA/George Shelton KSC-07pd1095

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facil...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians secure the backshell with the Phoenix Mars Lander inside onto a spin table for spin testing. The Phoenix mission is the fi... More

KENNEDY SPACE CENTER, FLA. --  In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first project in NASA's first openly competed program of Mars Scout missions. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. It will serve as NASA's first exploration of a potential modern habitat on Mars and open the door to a renewed search for carbon-bearing compounds, last attempted with NASA's Viking missions in the 1970s. A stereo color camera and a weather station will study the surrounding environment while the other instruments check excavated soil samples for water, organic chemicals and conditions that could indicate whether the site was ever hospitable to life. Microscopes can reveal features as small as one one-thousandth the width of a human hair. Launch of Phoenix aboard a Delta II rocket is targeted for Aug. 3 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/George Shelton KSC-07pd1106

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Faci...

KENNEDY SPACE CENTER, FLA. -- In the Payload Hazardous Servicing Facility, technicians complete the installation of the heat shield on the Phoenix Mars Lander spacecraft. The Phoenix mission is the first proje... More

Previous

of 70

Next