cassini spacecraft, cape canaveral air station

80 media by topicpage 1 of 1
Liftoff of a Titan IVB/Centaur carrying the Cassini orbiter and its attached Huygens probe

Liftoff of a Titan IVB/Centaur carrying the Cassini orbiter and its at...

Description: KENNEDY SPACE CENTER, FLA. -- A seven-year journey to the ringed planet Saturn begins with the liftoff of a Titan IVB/Centaur carrying the Cassini orbiter and its attached Huygens probe. This spect... More

Repair to the Huygens probe. NASA public domain image colelction.

Repair to the Huygens probe. NASA public domain image colelction.

(September 10, 1997) Jet Propulsion Laboratory (JPL) workers examine the Huygens probe after removal from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was ret... More

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is transported from the Skid Strip at Cape Canaveral Air Station (CCAS) after its arrival via a jet cargo aircraft. The Titan IV is currently scheduled to lift off from Launch Pad 40 at CCAS on October 6. Once deployed from the Centaur upper stage, Cassini will conduct gravity-assist flybys of the planets Venus and Jupiter, then arrive at Saturn in July 2004. Once there, it will perform an orbital survey of Saturn and send the European Space Agency's Huygens Probe into the dense and seemingly Earthlike atmosphere of Titan. The Cassini project is managed by NASA's Jet Propulsion Laboratory (JPL), Pasadena, California KSC-97pc247

The Centaur upper stage of the Titan IV expendable launch vehicle that...

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is transported from the Skid Strip at Cape Canaveral Air Station (CCAS) aft... More

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is transported from the Skid Strip at Cape Canaveral Air Station (CCAS) after its arrival via a jet cargo aircraft. The Titan IV is currently scheduled to lift off from Launch Pad 40 at CCAS on October 6. Once deployed from the Centaur upper stage, Cassini will conduct gravity-assist flybys of the planets Venus and Jupiter, then arrive at Saturn in July 2004. Once there, it will perform an orbital survey of Saturn and send the European Space Agency's Huygens Probe into the dense and seemingly Earthlike atmosphere of Titan. The Cassini project is managed by NASA's Jet Propulsion Laboratory (JPL), Pasadena, California KSC-97pc248

The Centaur upper stage of the Titan IV expendable launch vehicle that...

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is transported from the Skid Strip at Cape Canaveral Air Station (CCAS) aft... More

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is unloaded from a jet cargo aircraft at the Skid Strip at Cape Canaveral Air Station (CCAS). The Titan IV is currently scheduled to lift off from Launch Pad 40 at CCAS on October 6. Once deployed from the Centaur upper stage, Cassini will conduct gravity-assist flybys of the planets Venus and Jupiter, then arrive at Saturn in July 2004. Once there, it will perform an orbital survey of Saturn and send the European Space Agency's Huygens Probe into the dense and seemingly Earthlike atmosphere of Titan. The Cassini project is managed by NASA's Jet Propulsion Laboratory (JPL), Pasadena, California KSC-97pc246

The Centaur upper stage of the Titan IV expendable launch vehicle that...

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is unloaded from a jet cargo aircraft at the Skid Strip at Cape Canaveral A... More

Workers take off the protective covering on the propulsion module for the Cassini spacecraft after uncrating the module at KSC's Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The extended journey of 6.7 years to Saturn and the 4-year mission for Cassini once it gets there will require the spacecraft to carry a large amount of propellant for inflight trajectory-correction maneuvers and attitude control, particularly during the science observations. The propulsion module has redundant 445-newton main engines that burn nitrogen tetraoxide and monomethyl-hydrazine for main propulsion and 16 smaller 1-newton engines that burn hydrazine to control attitude and to correct small deviations from the spacecraft flight path. Cassini will be launched on a Titan IVB/Centaur expendable launch vehicle. Liftoff is targeted for October 6 from Launch Complex 40, Cape Canaveral Air Station KSC-97pc402

Workers take off the protective covering on the propulsion module for ...

Workers take off the protective covering on the propulsion module for the Cassini spacecraft after uncrating the module at KSC's Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2). The extended journey o... More

The first stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is lowered into a high bay in the Vertical Integration Building at Cape Canaveral Air Station (CCAS) to begin stacking operations. The Titan IV is currently scheduled to lift off from Launch Pad 40 at CCAS on October 6. Once deployed from the Titan's Centaur upper stage, Cassini will conduct gravity-assist flybys of the planets Venus and Jupiter, then arrive at Saturn in July 2004. Once there, it will perform an orbital survey of Saturn and send the European Space Agency's Huygens Probe into the dense and seemingly Earthlike atmosphere of Titan. The Cassini project is managed by NASA's Jet Propulsion Laboratory (JPL), Pasadena, California KSC-97pc640

The first stage of the Titan IV expendable launch vehicle that will pr...

The first stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is lowered into a high bay in the Vertical Integration Building at Cape Canaveral A... More

Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which /1997/66-97.htm">just landed</a> at KSC’s Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc678

Workers offload the shipping container with the Cassini orbiter from w...

Workers offload the shipping container with the Cassini orbiter from what looks like a giant shark mouth, but is really an Air Force C-17 air cargo plane which kscpao/release/1997/66-97.htm">just landed</a> at ... More

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The /1997/66-97.htm">orbiter arrived</a> at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc682

Workers prepare to move the shipping container with the Cassini orbite...

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The kscpao/release/1997/66-97.ht... More

Workers prepare to tow away the large container with the Cassini orbiter from KSC’s Shuttle Landing Facility. The orbiter /1997/66-97.htm">just arrived</a> on the U.S. Air Force C-17 air cargo plane, shown here, from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc679

Workers prepare to tow away the large container with the Cassini orbit...

Workers prepare to tow away the large container with the Cassini orbiter from KSC’s Shuttle Landing Facility. The orbiter kscpao/release/1997/66-97.htm">just arrived</a> on the U.S. Air Force C-17 air cargo pla... More

Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17 air cargo plane after its /1997/66-97.htm">arrival</a> at KSC’s Shuttle Landing Facility from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc677

Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17...

Workers begin unloading the Cassini orbiter from a U.S. Air Force C-17 air cargo plane after its kscpao/release/1997/66-97.htm">arrival</a> at KSC’s Shuttle Landing Facility from Edwards Air Force Base, Califor... More

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The /1997/66-97.htm">orbiter arrived</a> at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc681

Workers prepare to move the shipping container with the Cassini orbite...

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The kscpao/release/1997/66-97.ht... More

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The /1997/66-97.htm">orbiter arrived</a> at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc680

Workers prepare to move the shipping container with the Cassini orbite...

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The kscpao/release/1997/66-97.ht... More

Workers in the Payload Hazardous Servicing Facility (PHSF) stand around the upper experiment module and base of the Cassini orbiter during prelaunch processing, testing and integration in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc731

Workers in the Payload Hazardous Servicing Facility (PHSF) stand aroun...

Workers in the Payload Hazardous Servicing Facility (PHSF) stand around the upper experiment module and base of the Cassini orbiter during prelaunch processing, testing and integration in that facility. The Cas... More

A worker in the Payload Hazardous Servicing Facility (PHSF) stands behind the bottom side of the experiment platform for the Huygens probe that will accompany the Cassini orbiter to Saturn during prelaunch processing testing and integration in that facility. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc732

A worker in the Payload Hazardous Servicing Facility (PHSF) stands beh...

A worker in the Payload Hazardous Servicing Facility (PHSF) stands behind the bottom side of the experiment platform for the Huygens probe that will accompany the Cassini orbiter to Saturn during prelaunch proc... More

An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the front heat shield of the Huygens probe during prelaunch processing testing and integration in that facility, with the probe’s back cover in the background. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc729

An employee in the Payload Hazardous Servicing Facility (PHSF) sews th...

An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the front heat shield of the Huygens probe during prelaunch processing testing and integration in that facility... More

Workers in the Payload Hazardous Servicing Facility (PHSF) perform checkouts of the upper experiment module and base of the Cassini orbiter during prelaunch processing, testing and integration in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc727

Workers in the Payload Hazardous Servicing Facility (PHSF) perform che...

Workers in the Payload Hazardous Servicing Facility (PHSF) perform checkouts of the upper experiment module and base of the Cassini orbiter during prelaunch processing, testing and integration in that facility.... More

Employees in the Payload Hazardous Servicing Facility (PHSF) lower the upper experiment module and base of the Cassini orbiter onto a work stand during prelaunch processing, testing and integration work in that facility. The Cassini orbiter and Huygens probe being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc726

Employees in the Payload Hazardous Servicing Facility (PHSF) lower the...

Employees in the Payload Hazardous Servicing Facility (PHSF) lower the upper experiment module and base of the Cassini orbiter onto a work stand during prelaunch processing, testing and integration work in that... More

An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the back cover and heat shield of the Huygens probe during prelaunch processing, testing and integration in that facility. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc728

An employee in the Payload Hazardous Servicing Facility (PHSF) sews th...

An employee in the Payload Hazardous Servicing Facility (PHSF) sews thermal insulation material on the back cover and heat shield of the Huygens probe during prelaunch processing, testing and integration in tha... More

An employee in the Payload Hazardous Servicing Facility (PHSF) works on the top side of the experiment platform for the Huygens probe that will accompany the Cassini orbiter to Saturn during prelaunch processing, testing and integration in that facility. The Huygens probe and the Cassini orbiter being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc730

An employee in the Payload Hazardous Servicing Facility (PHSF) works o...

An employee in the Payload Hazardous Servicing Facility (PHSF) works on the top side of the experiment platform for the Huygens probe that will accompany the Cassini orbiter to Saturn during prelaunch processin... More

Jet Propulsion Laboratory (JPL) technicians finish mounting a thermal model of a radioisotope thermoelectric generator (RTG) on the installation cart which will be used to install the RTG in the Cassini spacecraft at Level 14 of Space Launch Complex 40, Cape Canaveral Air Station.  The technicians use the thermal model to practice installation procedures.  The three actual RTGs which will provide electrical power to Cassini on its 6.7-mile trip to the Saturnian system, and during its four-year mission at Saturn, are being tested and monitored in the Radioisotope Thermoelectric Generator Storage Building in KSC's Industrial Area.  The RTGs use heat from the natural decay of plutonium to generate electric power.  RTGs enable spacecraft to operate far from the Sun where solar power systems are not feasible.  The RTGs on Cassini are of the same design as those flying on the already deployed Galileo and Ulysses spacecraft. The Cassini mission is targeted for an October 6 launch aboard a Titan IVB/Centaur expendable launch vehicle.  Cassini is built and managed for NASA by JPL KSC-10941f07

Jet Propulsion Laboratory (JPL) technicians finish mounting a thermal ...

Jet Propulsion Laboratory (JPL) technicians finish mounting a thermal model of a radioisotope thermoelectric generator (RTG) on the installation cart which will be used to install the RTG in the Cassini spacecr... More

The Titan IVB core vehicle and its twin Solid Rocket  Motor Upgrades (SRMUs) which will be used to propel the Cassini spacecraft to its final  destination, Saturn, approaches the pad at Launch Complex 40, Cape Canaveral Air  Station. At the pad, the Centaur upper stage will be added and, eventually, the prime  payload, the Cassini spacecraft. Cassini will explore the Saturnian system, including the  planet’s rings and moon, Titan. Launch of the Cassini mission to Saturn is scheduled for  Oct. 6 KSC-97PC871

The Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (...

The Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (SRMUs) which will be used to propel the Cassini spacecraft to its final destination, Saturn, approaches the pad at Launch Complex 40, Cape ... More

The Titan IVB core vehicle and its twin Solid Rocket  Motor Upgrades (SRMUs) which will be used to propel the Cassini spacecraft to its final  destination, Saturn, arrive at the pad at Launch Complex 40, Cape Canaveral Air  Station. At the pad, the Centaur upper stage will be added and, eventually, the prime  payload, the Cassini spacecraft. Cassini will explore the Saturnian system, including the  planet’s rings and moon, Titan. Launch of the Cassini mission to Saturn is scheduled for  Oct. 6 KSC-97PC872

The Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (...

The Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (SRMUs) which will be used to propel the Cassini spacecraft to its final destination, Saturn, arrive at the pad at Launch Complex 40, Cape C... More

The Titan IVB core vehicle and its twin Solid Rocket  Motor Upgrades (SRMUs) which will be used to propel the Cassini spacecraft to its final  destination, Saturn, arrive at the pad at Launch Complex 40, Cape Canaveral Air  Station. At the pad, the Centaur upper stage will be added and, eventually, the prime  payload, the Cassini spacecraft. Cassini will explore the Saturnian system, including the  planet’s rings and moon, Titan. Launch of the Cassini mission to Saturn is scheduled for  Oct. 6 KSC-97PC869

The Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (...

The Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (SRMUs) which will be used to propel the Cassini spacecraft to its final destination, Saturn, arrive at the pad at Launch Complex 40, Cape C... More

A Titan IVB core vehicle and its twin Solid Rocket  Motor Upgrades (SRMUs)  depart from the Solid Rocket Motor Assembly and  Readiness Facility (SMARF), Cape Canaveral Air Station (CCAS), en route to Launch  Complex 40. At the pad, the Centaur upper stage will be added and, eventually, the  prime payload, the Cassini spacecraft. Cassini will explore the Saturnian system,  including the planet’s rings and moon, Titan. Launch of the Cassini mission to Saturn is  scheduled for Oct. 6 from Pad 40, CCAS KSC-97PC870

A Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (SR...

A Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (SRMUs) depart from the Solid Rocket Motor Assembly and Readiness Facility (SMARF), Cape Canaveral Air Station (CCAS), en route to Launch Co... More

KENNEDY SPACE CENTER, FLA. -- A Centaur upper stage is prepared for hoisting at Launch Pad 40 at Cape Canaveral Air Station to be mated with the Titan IV expendable launch vehicle that will propel the Cassini spacecraft and the European Space Agency's Huygens probe to Saturn and its moon Titan.  Cassini will explore Saturn, its rings and moons for four  years.  The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan.  The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California.  The Cassini mission is targeted for an October 6 launch to begin its 6.7-year journey to the Saturnian system.  Arrival at the planet is expected to occur around July 1, 2004. KSC-97PC915

KENNEDY SPACE CENTER, FLA. -- A Centaur upper stage is prepared for ho...

KENNEDY SPACE CENTER, FLA. -- A Centaur upper stage is prepared for hoisting at Launch Pad 40 at Cape Canaveral Air Station to be mated with the Titan IV expendable launch vehicle that will propel the Cassini s... More

KENNEDY SPACE CENTER, FLA. -- A Centaur upper stage is hoisted at Launch Pad 40 at Cape Canaveral Air Station for mating with the Titan IV expendable launch vehicle that will propel the Cassini spacecraft and the European Space Agency's Huygens probe to Saturn and its moon Titan.  Cassini will explore Saturn, its rings and moons for four  years.  The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn's largest moon, Titan.  The orbiter was designed and assembled at NASA's Jet Propulsion Laboratory in California.  The Cassini mission is targeted for an October 6 launch to begin its 6.7-year journey to the Saturnian system.  Arrival at the planet is expected to occur around July 1, 2004. KSC-97PC916

KENNEDY SPACE CENTER, FLA. -- A Centaur upper stage is hoisted at Laun...

KENNEDY SPACE CENTER, FLA. -- A Centaur upper stage is hoisted at Launch Pad 40 at Cape Canaveral Air Station for mating with the Titan IV expendable launch vehicle that will propel the Cassini spacecraft and t... More

The propulsion system is mated to the Lower Equipment Module of the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC982

The propulsion system is mated to the Lower Equipment Module of the Ca...

The propulsion system is mated to the Lower Equipment Module of the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s ring... More

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC977

The Lower Equipment Module of the Cassini spacecraft is lifted into a ...

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s rings and i... More

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC976

The Lower Equipment Module of the Cassini spacecraft is lifted into a ...

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s rings and i... More

The propulsion system is mated to the Lower Equipment Module of the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC981

The propulsion system is mated to the Lower Equipment Module of the Ca...

The propulsion system is mated to the Lower Equipment Module of the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s ring... More

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC978

The Lower Equipment Module of the Cassini spacecraft is lifted into a ...

The Lower Equipment Module of the Cassini spacecraft is lifted into a workstand in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s rings and i... More

The propulsion system is mated to the Lower Equipment Module of the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC979

The propulsion system is mated to the Lower Equipment Module of the Ca...

The propulsion system is mated to the Lower Equipment Module of the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s ring... More

The propulsion system is mated to the Lower Equipment Module of the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC980

The propulsion system is mated to the Lower Equipment Module of the Ca...

The propulsion system is mated to the Lower Equipment Module of the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s ring... More

The propulsion system is mated to the Lower Equipment Module of the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF).  Cassini will explore the Saturnian system, including the planet’s rings and its moon, Titan. Launch of the Cassini mission to Saturn is scheduled for Oct. 6 from Launch Complex 40, Cape Canaveral Air Station, aboard a Titan IVB unmanned vehicle KSC-97PC983

The propulsion system is mated to the Lower Equipment Module of the Ca...

The propulsion system is mated to the Lower Equipment Module of the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF). Cassini will explore the Saturnian system, including the planet’s ring... More

Technicians from the Jet Propulsion Laboratory (JPL)  attach the upper equipment module to the propulsion module and the lower equipment  module in the Payload Hazardous Servicing Facility in July prior to installation on the Cassini spacecraft at KSC. A four-year, close-up study of the Saturnian system, the  mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will  take seven years for the spacecraft to reach Saturn. JPL is managing the Cassini project  for NASA KSC-97PC1015

Technicians from the Jet Propulsion Laboratory (JPL) attach the upper...

Technicians from the Jet Propulsion Laboratory (JPL) attach the upper equipment module to the propulsion module and the lower equipment module in the Payload Hazardous Servicing Facility in July prior to inst... More

Technicians from the Jet Propulsion Laboratory (JPL) of the  California Institute of Technology lift the remote sensing pallet in the Payload Hazardous  Servicing Facility at KSC in July prior to installation on the Cassini spacecraft. A four- year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch  from Cape Canaveral Air Station in October 1997. It will take seven years for the  spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study  Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the  Cassini project for NASA KSC-97PC1026

Technicians from the Jet Propulsion Laboratory (JPL) of the Californi...

Technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology lift the remote sensing pallet in the Payload Hazardous Servicing Facility at KSC in July prior to installation o... More

The complete remote sensing pallet is lowered by  technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of  Technology and mated at the interface with the Cassini spacecraft in the Payload  Hazardous Servicing Facility at KSC in July. A four-year, close-up study of the Saturnian  system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in  October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific  instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field,  rings, and several moons. JPL is managing the Cassini project for NASA KSC-97PC1028

The complete remote sensing pallet is lowered by technicians from the...

The complete remote sensing pallet is lowered by technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology and mated at the interface with the Cassini spacecraft in the Pa... More

The complete remote sensing pallet is lowered by  technicians from  the Jet Propulsion Laboratory (JPL) of the California Institute of Technology to  mate with the Cassini spacecraft in the Payload Hazardous Servicing Facility at KSC in  July. A four-year, close-up study of the Saturnian system, the Cassini mission is  scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven  years for the spacecraft to reach Saturn. Scientific instruments carried aboard the  spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL  is managing the Cassini project for NASA KSC-97PC1027

The complete remote sensing pallet is lowered by technicians from th...

The complete remote sensing pallet is lowered by technicians from the Jet Propulsion Laboratory (JPL) of the California Institute of Technology to mate with the Cassini spacecraft in the Payload Hazardous Se... More

In the Payload Hazardous Servicing Facility (PHSF), the Cassini spacecraft is prepared for its lift onto a transporter which will move it to Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will study the planet, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1335

In the Payload Hazardous Servicing Facility (PHSF), the Cassini spacec...

In the Payload Hazardous Servicing Facility (PHSF), the Cassini spacecraft is prepared for its lift onto a transporter which will move it to Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an i... More

Workers in the Payload Hazardous Servicing Facility (PHSF) place a protective covering over the Cassini spacecraft in preparation for its move to Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will study the planet, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1334

Workers in the Payload Hazardous Servicing Facility (PHSF) place a pro...

Workers in the Payload Hazardous Servicing Facility (PHSF) place a protective covering over the Cassini spacecraft in preparation for its move to Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is... More

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), connect the crane to the top of the Cassini spacecraft in preparation for the lift to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1306

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), c...

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), connect the crane to the top of the Cassini spacecraft in preparation for the lift to the top of its Titan IV/Centaur launch vehicle. Cassini... More

The Cassini spacecraft is lowered to the top of its Titan IV/Centaur launch vehicle at Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1307

The Cassini spacecraft is lowered to the top of its Titan IV/Centaur l...

The Cassini spacecraft is lowered to the top of its Titan IV/Centaur launch vehicle at Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an international mission conducted by the National Aeronau... More

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), connect the crane to the top of the Cassini spacecraft in preparation for the lift to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1305

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), c...

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), connect the crane to the top of the Cassini spacecraft in preparation for the lift to the top of its Titan IV/Centaur launch vehicle. Cassini... More

The Cassini spacecraft is rolled out of the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center, Fla., shortly before being transported to Complex 40 at Cape Canaveral Air Station (CCAS) where it will be lifted to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1303

The Cassini spacecraft is rolled out of the Payload Hazardous Servicin...

The Cassini spacecraft is rolled out of the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center, Fla., shortly before being transported to Complex 40 at Cape Canaveral Air Station (CCAS) where i... More

The Cassini spacecraft arrives at Complex 40, Cape Canaveral Air Station (CCAS), where it will be lifted to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1304

The Cassini spacecraft arrives at Complex 40, Cape Canaveral Air Stati...

The Cassini spacecraft arrives at Complex 40, Cape Canaveral Air Station (CCAS), where it will be lifted to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the N... More

Technicians at Cape Canaveral Air Station (CCAS) begin to remove the transportation cover from the Cassini spacecraft after it was lifted to the top of the Titan IV/Centaur launch vehicle at Complex 40. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1302

Technicians at Cape Canaveral Air Station (CCAS) begin to remove the t...

Technicians at Cape Canaveral Air Station (CCAS) begin to remove the transportation cover from the Cassini spacecraft after it was lifted to the top of the Titan IV/Centaur launch vehicle at Complex 40. Cassini... More

A crane lowers a protective transportation cover over the Cassini spacecraft, with its attached Huygens probe, at Launch Pad 40 at Cape Canaveral Air Station for the spacecraft’s return trip to the Payload Hazardous Servicing Facility (PHSF). Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan KSC-97PC1348

A crane lowers a protective transportation cover over the Cassini spac...

A crane lowers a protective transportation cover over the Cassini spacecraft, with its attached Huygens probe, at Launch Pad 40 at Cape Canaveral Air Station for the spacecraft’s return trip to the Payload Haza... More

The Cassini spacecraft, with its attached Huygens probe, is lowered from Launch Pad 40 at Cape Canaveral Air Station for its return trip to the Payload Hazardous Servicing Facility (PHSF). Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan KSC-97PC1347

The Cassini spacecraft, with its attached Huygens probe, is lowered fr...

The Cassini spacecraft, with its attached Huygens probe, is lowered from Launch Pad 40 at Cape Canaveral Air Station for its return trip to the Payload Hazardous Servicing Facility (PHSF). Damage to thermal ins... More

Workers in the Payload Hazardous Servicing Facility (PHSF) finish the removal of a protective cover from the Cassini spacecraft with its attached Huygens probe. Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan KSC-97PC1350

Workers in the Payload Hazardous Servicing Facility (PHSF) finish the ...

Workers in the Payload Hazardous Servicing Facility (PHSF) finish the removal of a protective cover from the Cassini spacecraft with its attached Huygens probe. Damage to thermal insulation was discovered insid... More

Workers in the Payload Hazardous Servicing Facility (PHSF) begin to remove a protective cover from the Cassini spacecraft with its attached Huygens probe. Damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station. Cassini will explore the Saturnian system, including the planet’s rings, while the Huygens probe will explore the moon Titan KSC-97PC1349

Workers in the Payload Hazardous Servicing Facility (PHSF) begin to re...

Workers in the Payload Hazardous Servicing Facility (PHSF) begin to remove a protective cover from the Cassini spacecraft with its attached Huygens probe. Damage to thermal insulation was discovered inside Huyg... More

Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1363

Workers remove the Huygens probe from the Cassini spacecraft in the Pa...

Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered ... More

Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1362

Workers remove the Huygens probe from the Cassini spacecraft in the Pa...

Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered ... More

Jet Propulsion Laboratory (JPL) workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1360

Jet Propulsion Laboratory (JPL) workers remove the Huygens probe from ...

Jet Propulsion Laboratory (JPL) workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to th... More

Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Further internal inspection, insulation repair and a cleaning of the probe are now required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1361

Workers remove the Huygens probe from the Cassini spacecraft in the Pa...

Workers remove the Huygens probe from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered ... More

Dornier Satelliten Systeme (DSS) workers lift the front heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1395

Dornier Satelliten Systeme (DSS) workers lift the front heat shield of...

Dornier Satelliten Systeme (DSS) workers lift the front heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to therma... More

Dornier Satelliten Systeme (DSS) workers lift part of the Huygens probe aft cover assembly in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1394

Dornier Satelliten Systeme (DSS) workers lift part of the Huygens prob...

Dornier Satelliten Systeme (DSS) workers lift part of the Huygens probe aft cover assembly in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to ther... More

Jet Propulsion Laboratory (JPL) workers examine the Huygens probe after removal from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after Cassini returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1392

Jet Propulsion Laboratory (JPL) workers examine the Huygens probe afte...

Jet Propulsion Laboratory (JPL) workers examine the Huygens probe after removal from the Cassini spacecraft in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF aft... More

Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1390

Dornier Satelliten Systeme (DSS) workers place the back cover of the H...

Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF ... More

Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1388

Dornier Satelliten Systeme (DSS) workers lift the heat shield of the H...

Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insu... More

Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1391

Dornier Satelliten Systeme (DSS) workers place the back cover of the H...

Dornier Satelliten Systeme (DSS) workers place the back cover of the Huygens probe under its front heat shield in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF ... More

Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insulation was discovered inside Huygens from an abnormally high flow of conditioned air. Internal inspection, insulation repair and a cleaning of the probe were required. Mission managers are targeting a mid-October launch date after the Cassini spacecraft, aboard which Huygens will be launched, returns to the pad and is once again placed atop its Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station KSC-97PC1389

Dornier Satelliten Systeme (DSS) workers lift the heat shield of the H...

Dornier Satelliten Systeme (DSS) workers lift the heat shield of the Huygens probe in the Payload Hazardous Servicing Facility (PHSF) at KSC. The spacecraft was returned to the PHSF after damage to thermal insu... More

The Cassini spacecraft, covered by an environmentally controlled protective enclosure, is lifted at Launch Complex 40, Cape Canaveral Air Station (CCAS), in preparation to mate it to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 13, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-11401f24

The Cassini spacecraft, covered by an environmentally controlled prote...

The Cassini spacecraft, covered by an environmentally controlled protective enclosure, is lifted at Launch Complex 40, Cape Canaveral Air Station (CCAS), in preparation to mate it to the top of its Titan IV/Cen... More

The Cassini spacecraft, protected by an environmentally controlled protective fairing, is sitting at Pad 40 at Cape Canaveral Air Station, awaiting its launch scheduled for mid-October atop a Titan IV/Centaur launch vehicle. A four-year, close-up study of the Saturnian system, the Cassini mission will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. NASA’s Jet Propulsion Laboratory is managing the Cassini project KSC-11416f04

The Cassini spacecraft, protected by an environmentally controlled pro...

The Cassini spacecraft, protected by an environmentally controlled protective fairing, is sitting at Pad 40 at Cape Canaveral Air Station, awaiting its launch scheduled for mid-October atop a Titan IV/Centaur l... More

The Cassini spacecraft awaits placement of its payload fairing at Launch Pad 40 at Cape Canaveral Air Station (CCAS) to protect Cassini during launch. Scheduled for launch in mid-October, the Cassini mission is a joint US-European four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its moons, seeks insight into the origins and evolution of the early solar system. NASA’s Jet Propulsion Laboratory is managing the Cassini project KSC-11415f07

The Cassini spacecraft awaits placement of its payload fairing at Laun...

The Cassini spacecraft awaits placement of its payload fairing at Launch Pad 40 at Cape Canaveral Air Station (CCAS) to protect Cassini during launch. Scheduled for launch in mid-October, the Cassini mission is... More

The Cassini spacecraft, protected by an environmentally controlled protective fairing, is sitting at Pad 40 at Cape Canaveral Air Station, awaiting its launch scheduled for mid-October atop a Titan IV/Centaur launch vehicle. A fouryear, close-up study of the Saturnian system, the Cassini mission will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. NASA’s Jet Propulsion Laboratory is managing the Cassini project KSC-11415f10

The Cassini spacecraft, protected by an environmentally controlled pro...

The Cassini spacecraft, protected by an environmentally controlled protective fairing, is sitting at Pad 40 at Cape Canaveral Air Station, awaiting its launch scheduled for mid-October atop a Titan IV/Centaur l... More

The Cassini spacecraft, with the Huygens probe seen on the right in this photo, sits atop a Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station, where it awaits placement of its payload fairing to protect Cassini during launch. Instruments mounted on the Huygens probe, which was developed by the European Space Agency (ESA), will receive atmospheric and surface data on Saturn’s main moon, Titan, to send back to Earth as part of the mission. A four-year, close-up study of the Saturnian system, the mission is scheduled for launch from Cape Canaveral Air Station in mid-October KSC-11415f03

The Cassini spacecraft, with the Huygens probe seen on the right in th...

The Cassini spacecraft, with the Huygens probe seen on the right in this photo, sits atop a Titan IVB expendable launch vehicle at Launch Pad 40 at Cape Canaveral Air Station, where it awaits placement of its p... More

The Cassini spacecraft awaits placement of its payload fairing at Launch Pad 40 at Cape Canaveral Air Station (CCAS) to protect Cassini during launch. Scheduled for launch in mid-October, the Cassini mission is a joint US-European four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its moons, seeks insight into the origins and evolution of the early solar system. NASA’s Jet Propulsion Laboratory is managing the Cassini project KSC-11415f06

The Cassini spacecraft awaits placement of its payload fairing at Laun...

The Cassini spacecraft awaits placement of its payload fairing at Launch Pad 40 at Cape Canaveral Air Station (CCAS) to protect Cassini during launch. Scheduled for launch in mid-October, the Cassini mission is... More

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13 KSC-97PC1536

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 40 on Cape Canaveral A...

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, comp... More

At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13 KSC-97PC1535

At Launch Complex 40 on Cape Canaveral Air Station, workers are instal...

At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical powe... More

At Launch Complex 40 on Cape Canaveral Air Station, one of three Radioisotope Thermoelectric Generators (RTGs) is being installed on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13 KSC-97PC1534

At Launch Complex 40 on Cape Canaveral Air Station, one of three Radio...

At Launch Complex 40 on Cape Canaveral Air Station, one of three Radioisotope Thermoelectric Generators (RTGs) is being installed on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical p... More

At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13 KSC-97PC1538

At Launch Complex 40 on Cape Canaveral Air Station, workers are instal...

At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical powe... More

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13 KSC-97PC1532

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 40 on Cape Canaveral A...

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, comp... More

At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13 KSC-97PC1533

At Launch Complex 40 on Cape Canaveral Air Station, workers are instal...

At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical powe... More

At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical power systems that have flown successfully on 23 previous U.S. missions over the past 37 years. These generators produce power by converting heat into electrical energy; the heat is provided by the natural radioactive decay of plutonium-238 dioxide, a non-weapons-grade material. RTGs enable spacecraft to operate at significant distances from the Sun where solar power systems would not be feasible. Cassini will travel two billion miles to reach Saturn and another 1.1 billion miles while in orbit around Saturn. Cassini is undergoing final preparations for liftoff on a Titan IVB/Centaur launch vehicle, with the launch window opening at 4:55 a.m. EDT, Oct. 13 KSC-97PC1537

At Launch Complex 40 on Cape Canaveral Air Station, workers are instal...

At Launch Complex 40 on Cape Canaveral Air Station, workers are installing three Radioisotope Thermoelectric Generators (RTGs) on the Cassini spacecraft. RTGs are lightweight, compact spacecraft electrical powe... More

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower has been retracted away from the Titan IVB/Centaur carrying the Cassini spacecraft, marking a major milestone in the launch countdown sequence. Retraction of the structure began about an hour later than scheduled due to minor problems with ground support equipment. The launch vehicle, Cassini spacecraft and attached Centaur stage encased in a payload fairing, altogether stand about 183 feet tall; mounted at the base of the launch vehicle are two upgraded solid rocket motors. Liftoff of Cassini on the journey to Saturn and its moon Titan is slated to occur during a window opening at 4:55 a.m. EDT, Oct. 13, and extending through 7:15 a.m KSC-97PC1540

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service...

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower has been retracted away from the Titan IVB/Centaur carrying the Cassini spacecraft, marking a major milestone in the launch countdown... More

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower is rolled away from the Titan IVB/Centaur carrying the Cassini spacecraft, marking a major milestone in the launch countdown sequence. Retraction of the structure began about an hour later than scheduled due to minor problems with ground support equipment. The countdown clock for the Cassini mission began ticking earlier today at the T-26-hour mark. Other upcoming prelaunch milestones include activation of the final launch sequence for the Cassini spacecraft at the T-180-minute mark in the countdown, to be followed about an hour later by initiation of loading of the Titan IVB's Centaur stage with its complement of liquid hydrogen and liquid oxygen. Liftoff of Cassini on the journey to Saturn and its moon Titan is slated to occur during a window opening at 4:55 a.m. EDT, Oct. 13, and extending through 7:15 a.m KSC-97PC1539

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service...

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower is rolled away from the Titan IVB/Centaur carrying the Cassini spacecraft, marking a major milestone in the launch countdown sequence... More

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower has been retracted away from the Titan IVB/Centaur carrying the Cassini spacecraft and its attached Huygens probe. This is the second launch attempt for the Saturn-bound mission; a first try Oct. 13 was scrubbed primarily due to concerns about upper level wind conditions. Liftoff Oct. 15 is set to occur during a launch window opening at 4:43 a.m. EDT and extending until 7:03 a.m. Clearly visible in this view are the 66-foot-tall, 17-foot-wide payload fairing atop the vehicle, in which Cassini and the attached Centaur stage are encased, the two-stage liquid propellant core vehicle, and the twin 112-foot long solid rocket motor upgrades (SRMUs) straddling the core vehicle. It is the SRMUs which ignite first to begin the launch sequence KSC-97PC1542

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service...

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower has been retracted away from the Titan IVB/Centaur carrying the Cassini spacecraft and its attached Huygens probe. This is the second... More

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower is being rolled away from the Titan IVB/Centaur launch vehicle carrying the Cassini spacecraft, completing a major countdown milestone. This is the second launch attempt for the Saturn-bound mission; a first try Oct. 13 was scrubbed primarily due to concerns about upper level wind conditions. Liftoff Oct. 15 is set to occur during a launch window opening at 4:43 a.m. EDT and extending until 7:03 a.m KSC-97PC1541

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service...

At Launch Complex 40 on Cape Canaveral Air Station, the Mobile Service Tower is being rolled away from the Titan IVB/Centaur launch vehicle carrying the Cassini spacecraft, completing a major countdown mileston... More

NASA Space Science. NASA public domain image colelction.

NASA Space Science. NASA public domain image colelction.

At Launch Complex 40 at Cape Canaveral Air Station, the Mobile Service Tower is being rolled away from the Titan IVB/Centaur launch vehicle carrying the Cassini spacecraft, completing a major countdown mileston... More